Loading…
Seismic response of an embedded pile in a transversely isotropic half-space under incident P-wave excitations
A rigorous mathematical formulation is presented for the analysis of a thin cylindrical shell embedded in a transversely isotropic half-space under vertically incident P-wave excitation. By virtue of a set of ring-loads Green's functions for the shell and a group of dynamic fundamental solution...
Saved in:
Published in: | Soil dynamics and earthquake engineering (1984) 2011-03, Vol.31 (3), p.361-371 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A rigorous mathematical formulation is presented for the analysis of a thin cylindrical shell embedded in a transversely isotropic half-space under vertically incident P-wave excitation. By virtue of a set of ring-loads Green's functions for the shell and a group of dynamic fundamental solutions for the half-space under arbitrary interfacial dynamic loads, the problem is shown to be reducible to a pair of Fredholm integral equations. By utilizing an adaptive-gradient family capable of capturing regular-to-singular solution transitions smoothly, an accurate numerical procedure is developed. To assess the effect of material anisotropy on the dynamic load-transfer process, a set of comprehensive numerical results presented for various material and geometrical conditions. The accuracy of the proposed numerical scheme is confirmed by its comparison with a benchmark solution for the corresponding isotropic problem. |
---|---|
ISSN: | 0267-7261 1879-341X |
DOI: | 10.1016/j.soildyn.2010.09.005 |