Loading…

Finite-difference migration of the field of refracted waves in studies of the deep structure of the Earth’s crust and the upper mantle based on the DSS (on the example of the DOBRE profile)

The main results of deep seismic sounding (DSS) are usually presented in the form of high-velocity models of the medium. Some model examples and the international DOBRE profile have shown that the informativeness of the data obtained can be significantly enhanced by the construction of wave images o...

Full description

Saved in:
Bibliographic Details
Published in:Izvestiya. Physics of the solid earth 2010-11, Vol.46 (11), p.943-954
Main Authors: Pilipenko, V. N., Verpakhovskaya, A. O., Starostenko, V. I., Pavlenkova, N. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main results of deep seismic sounding (DSS) are usually presented in the form of high-velocity models of the medium. Some model examples and the international DOBRE profile have shown that the informativeness of the data obtained can be significantly enhanced by the construction of wave images of the Earth’s crust, based on the migration of refracted and wide-angle reflected waves. The Donets Basin Refraction/Reflection Experiment ( DOBRE ) profile crosses the Dnieper-Donets paleorift zone in the Donbas region. Along the profile, refracted waves from the basement and the upper mantle and the reflections from the crust basement (the M boundary) are reliably traced. This wave migration has been used to construct a wave image of the structure of the Earth’s crust. As a result, a clear seismic image of the basement surface, whose depth changes along the profile from 0 to 20 km, was obtained. In near-slope parts of the basin, several major faults were identified that had not been identified previously during standard kinematic data processing. It is shown that the crust-upper mantle transition zone is a clearly reflective horizon only within the crystalline massifs; under a depression, it is represented by a lens-shaped highly-heterogeneous area. As shown in the model examples, the images obtained using such a migration accurately reflect the structural features of the medium, in spite of its complicated structure.
ISSN:1069-3513
1555-6506
DOI:10.1134/S1069351310110042