Loading…
Gas sensing characteristics of WO3 nanoplates prepared by acidification method
WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reac...
Saved in:
Published in: | Thin solid films 2011-01, Vol.519 (6), p.2020-2024 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733 |
container_end_page | 2024 |
container_issue | 6 |
container_start_page | 2020 |
container_title | Thin solid films |
container_volume | 519 |
creator | Kim, Sun-Jung Hwang, In-Sung Choi, Joong-Ki Lee, Jong-Heun |
description | WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C. |
doi_str_mv | 10.1016/j.tsf.2010.10.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861534042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609010014410</els_id><sourcerecordid>861534042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</originalsourceid><addsrcrecordid>eNp9kEtv1UAMhUcVSFxKfwC72SBWufW88hArVEGpVNENqMuRM-O0c5WbhPEUqf-ehFuxZGXZOsc-_oR4r2CvQNWXh33hYa_hb78HXZ-JnWqbrtKNUa_EDsBCVUMHb8Rb5gMAKK3NTny_RpZME6fpQYZHzBgK5cQlBZbzIO_vjJxwmpcRC7FcMi2YKcr-WWJIMQ0pYEnzJI9UHuf4TrwecGS6eKnn4ufXLz-uvlW3d9c3V59vq2C1K1WLnXJQO9cbVZNtbK8IwZq-jdH1_RbN1toocB26xjobgokQVd9gR6ox5lx8PO1d8vzribj4Y-JA44gTzU_s21o5Y8HqValOypBn5kyDX3I6Yn72CvyGzh_8is5v6LbRim71fHjZjhxwHDJOIfE_ozatXY1bik8nHa2v_k6UPYdEU6CYMoXi45z-c-UPxoKCmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861534042</pqid></control><display><type>article</type><title>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</title><source>ScienceDirect Journals</source><creator>Kim, Sun-Jung ; Hwang, In-Sung ; Choi, Joong-Ki ; Lee, Jong-Heun</creator><creatorcontrib>Kim, Sun-Jung ; Hwang, In-Sung ; Choi, Joong-Ki ; Lee, Jong-Heun</creatorcontrib><description>WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.10.026</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acidification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Gas sensor ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Methods of nanofabrication ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures ; Nitrogen dioxide ; Other topics in nanoscale materials and structures ; Physics ; Powders ; Scanning electron microscopy ; Selective detection ; Selectivity ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Tungsten oxide ; Tungsten oxides ; X-ray diffraction</subject><ispartof>Thin solid films, 2011-01, Vol.519 (6), p.2020-2024</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</citedby><cites>FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23840163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sun-Jung</creatorcontrib><creatorcontrib>Hwang, In-Sung</creatorcontrib><creatorcontrib>Choi, Joong-Ki</creatorcontrib><creatorcontrib>Lee, Jong-Heun</creatorcontrib><title>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</title><title>Thin solid films</title><description>WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.</description><subject>Acidification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Gas sensor</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Nitrogen dioxide</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Powders</subject><subject>Scanning electron microscopy</subject><subject>Selective detection</subject><subject>Selectivity</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Tungsten oxide</subject><subject>Tungsten oxides</subject><subject>X-ray diffraction</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1UAMhUcVSFxKfwC72SBWufW88hArVEGpVNENqMuRM-O0c5WbhPEUqf-ehFuxZGXZOsc-_oR4r2CvQNWXh33hYa_hb78HXZ-JnWqbrtKNUa_EDsBCVUMHb8Rb5gMAKK3NTny_RpZME6fpQYZHzBgK5cQlBZbzIO_vjJxwmpcRC7FcMi2YKcr-WWJIMQ0pYEnzJI9UHuf4TrwecGS6eKnn4ufXLz-uvlW3d9c3V59vq2C1K1WLnXJQO9cbVZNtbK8IwZq-jdH1_RbN1toocB26xjobgokQVd9gR6ox5lx8PO1d8vzribj4Y-JA44gTzU_s21o5Y8HqValOypBn5kyDX3I6Yn72CvyGzh_8is5v6LbRim71fHjZjhxwHDJOIfE_ozatXY1bik8nHa2v_k6UPYdEU6CYMoXi45z-c-UPxoKCmw</recordid><startdate>20110103</startdate><enddate>20110103</enddate><creator>Kim, Sun-Jung</creator><creator>Hwang, In-Sung</creator><creator>Choi, Joong-Ki</creator><creator>Lee, Jong-Heun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110103</creationdate><title>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</title><author>Kim, Sun-Jung ; Hwang, In-Sung ; Choi, Joong-Ki ; Lee, Jong-Heun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acidification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Gas sensor</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Nitrogen dioxide</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Powders</topic><topic>Scanning electron microscopy</topic><topic>Selective detection</topic><topic>Selectivity</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Tungsten oxide</topic><topic>Tungsten oxides</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sun-Jung</creatorcontrib><creatorcontrib>Hwang, In-Sung</creatorcontrib><creatorcontrib>Choi, Joong-Ki</creatorcontrib><creatorcontrib>Lee, Jong-Heun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sun-Jung</au><au>Hwang, In-Sung</au><au>Choi, Joong-Ki</au><au>Lee, Jong-Heun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</atitle><jtitle>Thin solid films</jtitle><date>2011-01-03</date><risdate>2011</risdate><volume>519</volume><issue>6</issue><spage>2020</spage><epage>2024</epage><pages>2020-2024</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2010.10.026</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2011-01, Vol.519 (6), p.2020-2024 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_861534042 |
source | ScienceDirect Journals |
subjects | Acidification Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Gas sensor General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Methods of nanofabrication Morphology Nanocomposites Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures Nitrogen dioxide Other topics in nanoscale materials and structures Physics Powders Scanning electron microscopy Selective detection Selectivity Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Tungsten oxide Tungsten oxides X-ray diffraction |
title | Gas sensing characteristics of WO3 nanoplates prepared by acidification method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20sensing%20characteristics%20of%20WO3%20nanoplates%20prepared%20by%20acidification%20method&rft.jtitle=Thin%20solid%20films&rft.au=Kim,%20Sun-Jung&rft.date=2011-01-03&rft.volume=519&rft.issue=6&rft.spage=2020&rft.epage=2024&rft.pages=2020-2024&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.10.026&rft_dat=%3Cproquest_cross%3E861534042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861534042&rft_id=info:pmid/&rfr_iscdi=true |