Loading…

Gas sensing characteristics of WO3 nanoplates prepared by acidification method

WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reac...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2011-01, Vol.519 (6), p.2020-2024
Main Authors: Kim, Sun-Jung, Hwang, In-Sung, Choi, Joong-Ki, Lee, Jong-Heun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733
cites cdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733
container_end_page 2024
container_issue 6
container_start_page 2020
container_title Thin solid films
container_volume 519
creator Kim, Sun-Jung
Hwang, In-Sung
Choi, Joong-Ki
Lee, Jong-Heun
description WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.
doi_str_mv 10.1016/j.tsf.2010.10.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861534042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609010014410</els_id><sourcerecordid>861534042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</originalsourceid><addsrcrecordid>eNp9kEtv1UAMhUcVSFxKfwC72SBWufW88hArVEGpVNENqMuRM-O0c5WbhPEUqf-ehFuxZGXZOsc-_oR4r2CvQNWXh33hYa_hb78HXZ-JnWqbrtKNUa_EDsBCVUMHb8Rb5gMAKK3NTny_RpZME6fpQYZHzBgK5cQlBZbzIO_vjJxwmpcRC7FcMi2YKcr-WWJIMQ0pYEnzJI9UHuf4TrwecGS6eKnn4ufXLz-uvlW3d9c3V59vq2C1K1WLnXJQO9cbVZNtbK8IwZq-jdH1_RbN1toocB26xjobgokQVd9gR6ox5lx8PO1d8vzribj4Y-JA44gTzU_s21o5Y8HqValOypBn5kyDX3I6Yn72CvyGzh_8is5v6LbRim71fHjZjhxwHDJOIfE_ozatXY1bik8nHa2v_k6UPYdEU6CYMoXi45z-c-UPxoKCmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861534042</pqid></control><display><type>article</type><title>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</title><source>ScienceDirect Journals</source><creator>Kim, Sun-Jung ; Hwang, In-Sung ; Choi, Joong-Ki ; Lee, Jong-Heun</creator><creatorcontrib>Kim, Sun-Jung ; Hwang, In-Sung ; Choi, Joong-Ki ; Lee, Jong-Heun</creatorcontrib><description>WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2010.10.026</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acidification ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Gas sensor ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Methods of nanofabrication ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures ; Nitrogen dioxide ; Other topics in nanoscale materials and structures ; Physics ; Powders ; Scanning electron microscopy ; Selective detection ; Selectivity ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Tungsten oxide ; Tungsten oxides ; X-ray diffraction</subject><ispartof>Thin solid films, 2011-01, Vol.519 (6), p.2020-2024</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</citedby><cites>FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23840163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sun-Jung</creatorcontrib><creatorcontrib>Hwang, In-Sung</creatorcontrib><creatorcontrib>Choi, Joong-Ki</creatorcontrib><creatorcontrib>Lee, Jong-Heun</creatorcontrib><title>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</title><title>Thin solid films</title><description>WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.</description><subject>Acidification</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Gas sensor</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Nitrogen dioxide</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Powders</subject><subject>Scanning electron microscopy</subject><subject>Selective detection</subject><subject>Selectivity</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Tungsten oxide</subject><subject>Tungsten oxides</subject><subject>X-ray diffraction</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1UAMhUcVSFxKfwC72SBWufW88hArVEGpVNENqMuRM-O0c5WbhPEUqf-ehFuxZGXZOsc-_oR4r2CvQNWXh33hYa_hb78HXZ-JnWqbrtKNUa_EDsBCVUMHb8Rb5gMAKK3NTny_RpZME6fpQYZHzBgK5cQlBZbzIO_vjJxwmpcRC7FcMi2YKcr-WWJIMQ0pYEnzJI9UHuf4TrwecGS6eKnn4ufXLz-uvlW3d9c3V59vq2C1K1WLnXJQO9cbVZNtbK8IwZq-jdH1_RbN1toocB26xjobgokQVd9gR6ox5lx8PO1d8vzribj4Y-JA44gTzU_s21o5Y8HqValOypBn5kyDX3I6Yn72CvyGzh_8is5v6LbRim71fHjZjhxwHDJOIfE_ozatXY1bik8nHa2v_k6UPYdEU6CYMoXi45z-c-UPxoKCmw</recordid><startdate>20110103</startdate><enddate>20110103</enddate><creator>Kim, Sun-Jung</creator><creator>Hwang, In-Sung</creator><creator>Choi, Joong-Ki</creator><creator>Lee, Jong-Heun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110103</creationdate><title>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</title><author>Kim, Sun-Jung ; Hwang, In-Sung ; Choi, Joong-Ki ; Lee, Jong-Heun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acidification</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Gas sensor</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Nitrogen dioxide</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Powders</topic><topic>Scanning electron microscopy</topic><topic>Selective detection</topic><topic>Selectivity</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Tungsten oxide</topic><topic>Tungsten oxides</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sun-Jung</creatorcontrib><creatorcontrib>Hwang, In-Sung</creatorcontrib><creatorcontrib>Choi, Joong-Ki</creatorcontrib><creatorcontrib>Lee, Jong-Heun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sun-Jung</au><au>Hwang, In-Sung</au><au>Choi, Joong-Ki</au><au>Lee, Jong-Heun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas sensing characteristics of WO3 nanoplates prepared by acidification method</atitle><jtitle>Thin solid films</jtitle><date>2011-01-03</date><risdate>2011</risdate><volume>519</volume><issue>6</issue><spage>2020</spage><epage>2024</epage><pages>2020-2024</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>WO3⋅H2O nanoplates were prepared by the acidification of Na2WO4∙2H2O and converted into monoclinic WO3 nanoplates by heat treatment. The sizes, morphologies and preferred orientation of the WO3 nanoplates could be controlled by manipulating the acidity of the solution used for the acidification reaction. All of the WO3 nanoplates showed the selective detection of NO2 in the presence of other reducing gases, such as C2H5OH, CH3COCH3, CO, C3H8, and H2. The gas response, selectivity, and response speed were optimized by varying the morphology of the sensing materials and operation temperature. The WO3 nanoplates with a mean edge size of 192nm showed the most rapid gas response along with a high response and selectivity to NO2 when operated at 300°C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2010.10.026</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2011-01, Vol.519 (6), p.2020-2024
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_861534042
source ScienceDirect Journals
subjects Acidification
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Gas sensor
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Methods of nanofabrication
Morphology
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures
Nitrogen dioxide
Other topics in nanoscale materials and structures
Physics
Powders
Scanning electron microscopy
Selective detection
Selectivity
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Tungsten oxide
Tungsten oxides
X-ray diffraction
title Gas sensing characteristics of WO3 nanoplates prepared by acidification method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20sensing%20characteristics%20of%20WO3%20nanoplates%20prepared%20by%20acidification%20method&rft.jtitle=Thin%20solid%20films&rft.au=Kim,%20Sun-Jung&rft.date=2011-01-03&rft.volume=519&rft.issue=6&rft.spage=2020&rft.epage=2024&rft.pages=2020-2024&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2010.10.026&rft_dat=%3Cproquest_cross%3E861534042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-8a9150655b316e474b1ea043b8dd5bb122346231059a57454cc3d0d1b7a9e1733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861534042&rft_id=info:pmid/&rfr_iscdi=true