Loading…

All-chalcogenide middle infrared dielectric reflector and filter

We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge 25S 75 and Ge 15Te 85 chalcogenide films with high transparency in the middle infrared region st...

Full description

Saved in:
Bibliographic Details
Published in:Journal of non-crystalline solids 2011, Vol.357 (1), p.157-160
Main Authors: Kohoutek, T., Orava, J., Prikryl, J., Wagner, T., Frumar, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113
cites cdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113
container_end_page 160
container_issue 1
container_start_page 157
container_title Journal of non-crystalline solids
container_volume 357
creator Kohoutek, T.
Orava, J.
Prikryl, J.
Wagner, T.
Frumar, M.
description We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge 25S 75 and Ge 15Te 85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at λ ~ 1.4 μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge 25S 75 and Ge 15Te 85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near λ = 4 μm for fabricated reflector and narrow ~ 50% passband of prepared filter near λ = 3.934 μm. ►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters. ►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements. ►Chalcogenide dielectric reflector ( R > 99%) and passband filter ( T > 50%) with first order photonic bandgaps near λ = 4 μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12 μm region simply by changing film thicknesses.
doi_str_mv 10.1016/j.jnoncrysol.2010.10.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861534365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309310008057</els_id><sourcerecordid>861534365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</originalsourceid><addsrcrecordid>eNqFkMlOxDAMhiMEEsPyDr0gTh2cpU16YxGbNBIXOEep40JGmRaSAYm3J8MgOJKLE_v_7fhjrOIw58Dbs-V8OU4jps88xbmA7_QchNlhM260rJXhYpfNAISoJXRynx3kvIRytDQzdn4RY40vLuL0TGPwVK2C95GqMA7JJfKVDxQJ1ylglWjYXKdUudFXQ4hrSkdsb3Ax0_FPPGRPN9ePV3f14uH2_upiUaM0sK6xFbLvoFWiF7wxOEAzNL2CBjkI0F61hhPXDnSHyuiu1-BJtYC9Kk_O5SE73fZ9TdPbO-W1XYWMFKMbaXrP1rS8kUq2TVGarRLTlHP5s31NYeXSp-VgN8zs0v4xsxtmm0phVqwnP0NcRhcLgRFD_vULqUF2WhXd5VZHZeOPQMlmDDQi-ZAKIOun8P-wLyuxhl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861534365</pqid></control><display><type>article</type><title>All-chalcogenide middle infrared dielectric reflector and filter</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kohoutek, T. ; Orava, J. ; Prikryl, J. ; Wagner, T. ; Frumar, M.</creator><creatorcontrib>Kohoutek, T. ; Orava, J. ; Prikryl, J. ; Wagner, T. ; Frumar, M.</creatorcontrib><description>We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge 25S 75 and Ge 15Te 85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at λ ~ 1.4 μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge 25S 75 and Ge 15Te 85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near λ = 4 μm for fabricated reflector and narrow ~ 50% passband of prepared filter near λ = 3.934 μm. ►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters. ►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements. ►Chalcogenide dielectric reflector ( R &gt; 99%) and passband filter ( T &gt; 50%) with first order photonic bandgaps near λ = 4 μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12 μm region simply by changing film thicknesses.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2010.10.028</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Amorphous semiconductors ; Chalcogenides ; Devices ; Dielectrics ; Ellipsometry ; Energy gaps (solid state) ; Exact sciences and technology ; Infrared ; Infrared spectrometers, auxiliary equipment and techniques ; Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Multilayers ; Photonic band gaps ; Photonics ; Physics ; Reflectors</subject><ispartof>Journal of non-crystalline solids, 2011, Vol.357 (1), p.157-160</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</citedby><cites>FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23703974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kohoutek, T.</creatorcontrib><creatorcontrib>Orava, J.</creatorcontrib><creatorcontrib>Prikryl, J.</creatorcontrib><creatorcontrib>Wagner, T.</creatorcontrib><creatorcontrib>Frumar, M.</creatorcontrib><title>All-chalcogenide middle infrared dielectric reflector and filter</title><title>Journal of non-crystalline solids</title><description>We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge 25S 75 and Ge 15Te 85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at λ ~ 1.4 μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge 25S 75 and Ge 15Te 85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near λ = 4 μm for fabricated reflector and narrow ~ 50% passband of prepared filter near λ = 3.934 μm. ►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters. ►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements. ►Chalcogenide dielectric reflector ( R &gt; 99%) and passband filter ( T &gt; 50%) with first order photonic bandgaps near λ = 4 μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12 μm region simply by changing film thicknesses.</description><subject>Amorphous semiconductors</subject><subject>Chalcogenides</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Ellipsometry</subject><subject>Energy gaps (solid state)</subject><subject>Exact sciences and technology</subject><subject>Infrared</subject><subject>Infrared spectrometers, auxiliary equipment and techniques</subject><subject>Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Multilayers</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Physics</subject><subject>Reflectors</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOxDAMhiMEEsPyDr0gTh2cpU16YxGbNBIXOEep40JGmRaSAYm3J8MgOJKLE_v_7fhjrOIw58Dbs-V8OU4jps88xbmA7_QchNlhM260rJXhYpfNAISoJXRynx3kvIRytDQzdn4RY40vLuL0TGPwVK2C95GqMA7JJfKVDxQJ1ylglWjYXKdUudFXQ4hrSkdsb3Ax0_FPPGRPN9ePV3f14uH2_upiUaM0sK6xFbLvoFWiF7wxOEAzNL2CBjkI0F61hhPXDnSHyuiu1-BJtYC9Kk_O5SE73fZ9TdPbO-W1XYWMFKMbaXrP1rS8kUq2TVGarRLTlHP5s31NYeXSp-VgN8zs0v4xsxtmm0phVqwnP0NcRhcLgRFD_vULqUF2WhXd5VZHZeOPQMlmDDQi-ZAKIOun8P-wLyuxhl4</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kohoutek, T.</creator><creator>Orava, J.</creator><creator>Prikryl, J.</creator><creator>Wagner, T.</creator><creator>Frumar, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>All-chalcogenide middle infrared dielectric reflector and filter</title><author>Kohoutek, T. ; Orava, J. ; Prikryl, J. ; Wagner, T. ; Frumar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amorphous semiconductors</topic><topic>Chalcogenides</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Ellipsometry</topic><topic>Energy gaps (solid state)</topic><topic>Exact sciences and technology</topic><topic>Infrared</topic><topic>Infrared spectrometers, auxiliary equipment and techniques</topic><topic>Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Multilayers</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Physics</topic><topic>Reflectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohoutek, T.</creatorcontrib><creatorcontrib>Orava, J.</creatorcontrib><creatorcontrib>Prikryl, J.</creatorcontrib><creatorcontrib>Wagner, T.</creatorcontrib><creatorcontrib>Frumar, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohoutek, T.</au><au>Orava, J.</au><au>Prikryl, J.</au><au>Wagner, T.</au><au>Frumar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-chalcogenide middle infrared dielectric reflector and filter</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2011</date><risdate>2011</risdate><volume>357</volume><issue>1</issue><spage>157</spage><epage>160</epage><pages>157-160</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge 25S 75 and Ge 15Te 85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at λ ~ 1.4 μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge 25S 75 and Ge 15Te 85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near λ = 4 μm for fabricated reflector and narrow ~ 50% passband of prepared filter near λ = 3.934 μm. ►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters. ►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements. ►Chalcogenide dielectric reflector ( R &gt; 99%) and passband filter ( T &gt; 50%) with first order photonic bandgaps near λ = 4 μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12 μm region simply by changing film thicknesses.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2010.10.028</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2011, Vol.357 (1), p.157-160
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_861534365
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Amorphous semiconductors
Chalcogenides
Devices
Dielectrics
Ellipsometry
Energy gaps (solid state)
Exact sciences and technology
Infrared
Infrared spectrometers, auxiliary equipment and techniques
Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Multilayers
Photonic band gaps
Photonics
Physics
Reflectors
title All-chalcogenide middle infrared dielectric reflector and filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-chalcogenide%20middle%20infrared%20dielectric%20reflector%20and%20filter&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Kohoutek,%20T.&rft.date=2011&rft.volume=357&rft.issue=1&rft.spage=157&rft.epage=160&rft.pages=157-160&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2010.10.028&rft_dat=%3Cproquest_cross%3E861534365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861534365&rft_id=info:pmid/&rfr_iscdi=true