Loading…
All-chalcogenide middle infrared dielectric reflector and filter
We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around λ = 4 μm. The devices were made from alternating amorphous Ge 25S 75 and Ge 15Te 85 chalcogenide films with high transparency in the middle infrared region st...
Saved in:
Published in: | Journal of non-crystalline solids 2011, Vol.357 (1), p.157-160 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113 |
container_end_page | 160 |
container_issue | 1 |
container_start_page | 157 |
container_title | Journal of non-crystalline solids |
container_volume | 357 |
creator | Kohoutek, T. Orava, J. Prikryl, J. Wagner, T. Frumar, M. |
description | We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around
λ
=
4
μm. The devices were made from alternating amorphous Ge
25S
75 and Ge
15Te
85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at
λ
~
1.4
μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge
25S
75 and Ge
15Te
85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near
λ
=
4
μm for fabricated reflector and narrow ~
50% passband of prepared filter near
λ
=
3.934
μm.
►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters.
►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements.
►Chalcogenide dielectric reflector (
R
>
99%) and passband filter (
T
>
50%) with first order photonic bandgaps near
λ
=
4
μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12
μm region simply by changing film thicknesses. |
doi_str_mv | 10.1016/j.jnoncrysol.2010.10.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861534365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309310008057</els_id><sourcerecordid>861534365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</originalsourceid><addsrcrecordid>eNqFkMlOxDAMhiMEEsPyDr0gTh2cpU16YxGbNBIXOEep40JGmRaSAYm3J8MgOJKLE_v_7fhjrOIw58Dbs-V8OU4jps88xbmA7_QchNlhM260rJXhYpfNAISoJXRynx3kvIRytDQzdn4RY40vLuL0TGPwVK2C95GqMA7JJfKVDxQJ1ylglWjYXKdUudFXQ4hrSkdsb3Ax0_FPPGRPN9ePV3f14uH2_upiUaM0sK6xFbLvoFWiF7wxOEAzNL2CBjkI0F61hhPXDnSHyuiu1-BJtYC9Kk_O5SE73fZ9TdPbO-W1XYWMFKMbaXrP1rS8kUq2TVGarRLTlHP5s31NYeXSp-VgN8zs0v4xsxtmm0phVqwnP0NcRhcLgRFD_vULqUF2WhXd5VZHZeOPQMlmDDQi-ZAKIOun8P-wLyuxhl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861534365</pqid></control><display><type>article</type><title>All-chalcogenide middle infrared dielectric reflector and filter</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kohoutek, T. ; Orava, J. ; Prikryl, J. ; Wagner, T. ; Frumar, M.</creator><creatorcontrib>Kohoutek, T. ; Orava, J. ; Prikryl, J. ; Wagner, T. ; Frumar, M.</creatorcontrib><description>We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around
λ
=
4
μm. The devices were made from alternating amorphous Ge
25S
75 and Ge
15Te
85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at
λ
~
1.4
μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge
25S
75 and Ge
15Te
85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near
λ
=
4
μm for fabricated reflector and narrow ~
50% passband of prepared filter near
λ
=
3.934
μm.
►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters.
►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements.
►Chalcogenide dielectric reflector (
R
>
99%) and passband filter (
T
>
50%) with first order photonic bandgaps near
λ
=
4
μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12
μm region simply by changing film thicknesses.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2010.10.028</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Amorphous semiconductors ; Chalcogenides ; Devices ; Dielectrics ; Ellipsometry ; Energy gaps (solid state) ; Exact sciences and technology ; Infrared ; Infrared spectrometers, auxiliary equipment and techniques ; Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Multilayers ; Photonic band gaps ; Photonics ; Physics ; Reflectors</subject><ispartof>Journal of non-crystalline solids, 2011, Vol.357 (1), p.157-160</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</citedby><cites>FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23703974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kohoutek, T.</creatorcontrib><creatorcontrib>Orava, J.</creatorcontrib><creatorcontrib>Prikryl, J.</creatorcontrib><creatorcontrib>Wagner, T.</creatorcontrib><creatorcontrib>Frumar, M.</creatorcontrib><title>All-chalcogenide middle infrared dielectric reflector and filter</title><title>Journal of non-crystalline solids</title><description>We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around
λ
=
4
μm. The devices were made from alternating amorphous Ge
25S
75 and Ge
15Te
85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at
λ
~
1.4
μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge
25S
75 and Ge
15Te
85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near
λ
=
4
μm for fabricated reflector and narrow ~
50% passband of prepared filter near
λ
=
3.934
μm.
►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters.
►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements.
►Chalcogenide dielectric reflector (
R
>
99%) and passband filter (
T
>
50%) with first order photonic bandgaps near
λ
=
4
μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12
μm region simply by changing film thicknesses.</description><subject>Amorphous semiconductors</subject><subject>Chalcogenides</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Ellipsometry</subject><subject>Energy gaps (solid state)</subject><subject>Exact sciences and technology</subject><subject>Infrared</subject><subject>Infrared spectrometers, auxiliary equipment and techniques</subject><subject>Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Multilayers</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Physics</subject><subject>Reflectors</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOxDAMhiMEEsPyDr0gTh2cpU16YxGbNBIXOEep40JGmRaSAYm3J8MgOJKLE_v_7fhjrOIw58Dbs-V8OU4jps88xbmA7_QchNlhM260rJXhYpfNAISoJXRynx3kvIRytDQzdn4RY40vLuL0TGPwVK2C95GqMA7JJfKVDxQJ1ylglWjYXKdUudFXQ4hrSkdsb3Ax0_FPPGRPN9ePV3f14uH2_upiUaM0sK6xFbLvoFWiF7wxOEAzNL2CBjkI0F61hhPXDnSHyuiu1-BJtYC9Kk_O5SE73fZ9TdPbO-W1XYWMFKMbaXrP1rS8kUq2TVGarRLTlHP5s31NYeXSp-VgN8zs0v4xsxtmm0phVqwnP0NcRhcLgRFD_vULqUF2WhXd5VZHZeOPQMlmDDQi-ZAKIOun8P-wLyuxhl4</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kohoutek, T.</creator><creator>Orava, J.</creator><creator>Prikryl, J.</creator><creator>Wagner, T.</creator><creator>Frumar, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>All-chalcogenide middle infrared dielectric reflector and filter</title><author>Kohoutek, T. ; Orava, J. ; Prikryl, J. ; Wagner, T. ; Frumar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amorphous semiconductors</topic><topic>Chalcogenides</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Ellipsometry</topic><topic>Energy gaps (solid state)</topic><topic>Exact sciences and technology</topic><topic>Infrared</topic><topic>Infrared spectrometers, auxiliary equipment and techniques</topic><topic>Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Multilayers</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Physics</topic><topic>Reflectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohoutek, T.</creatorcontrib><creatorcontrib>Orava, J.</creatorcontrib><creatorcontrib>Prikryl, J.</creatorcontrib><creatorcontrib>Wagner, T.</creatorcontrib><creatorcontrib>Frumar, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohoutek, T.</au><au>Orava, J.</au><au>Prikryl, J.</au><au>Wagner, T.</au><au>Frumar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-chalcogenide middle infrared dielectric reflector and filter</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2011</date><risdate>2011</risdate><volume>357</volume><issue>1</issue><spage>157</spage><epage>160</epage><pages>157-160</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>We have fabricated a dielectric reflector and a passband filter, both with first order photonic bandgaps in the middle-infrared region around
λ
=
4
μm. The devices were made from alternating amorphous Ge
25S
75 and Ge
15Te
85 chalcogenide films with high transparency in the middle infrared region stacked in multilayers. Due to high thickness accuracy and periodicity of prepared multilayers we also observed second order photonic bandgaps at
λ
~
1.4
μm. The experimental data were in good agreement with theoretical predictions. The work focused on investigation of compositional homogeneity, surface roughness, thermal and optical properties of individual amorphous Ge
25S
75 and Ge
15Te
85 films. We confirmed chalcogenide materials as being of suitable choice for designing middle-infrared quarter wave stack devices. FT-IR reflectance spectra confirmed occurrence of 99.4% stopband near
λ
=
4
μm for fabricated reflector and narrow ~
50% passband of prepared filter near
λ
=
3.934
μm.
►Quarter wave stack (QWS) devices are one-dimensional photonic crystals usually multilayers applied as highly efficient dielectric reflectors and filters.
►Chalcogenides glasses and films exhibited high infrared transparency suitable for designing infrared QWS optical elements.
►Chalcogenide dielectric reflector (
R
>
99%) and passband filter (
T
>
50%) with first order photonic bandgaps near
λ
=
4
μm were prepared by stacking thermally and flash evaporated GeS and GeTe films. ►Photonic bandgaps of GeS/GeTe multilayers can be tuned at any wavelength in the 1–12
μm region simply by changing film thicknesses.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2010.10.028</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3093 |
ispartof | Journal of non-crystalline solids, 2011, Vol.357 (1), p.157-160 |
issn | 0022-3093 1873-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_861534365 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Amorphous semiconductors Chalcogenides Devices Dielectrics Ellipsometry Energy gaps (solid state) Exact sciences and technology Infrared Infrared spectrometers, auxiliary equipment and techniques Infrared, submillimeter wave, microwave and radiowave instruments, equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Multilayers Photonic band gaps Photonics Physics Reflectors |
title | All-chalcogenide middle infrared dielectric reflector and filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-chalcogenide%20middle%20infrared%20dielectric%20reflector%20and%20filter&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Kohoutek,%20T.&rft.date=2011&rft.volume=357&rft.issue=1&rft.spage=157&rft.epage=160&rft.pages=157-160&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2010.10.028&rft_dat=%3Cproquest_cross%3E861534365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-c623b90642b2158cf05f5b405c10207d4681e17a079c4879b70de460cb4487113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861534365&rft_id=info:pmid/&rfr_iscdi=true |