Loading…

Synthesis of high proton conducting nanoparticles by emulsion polymerization

High ion-exchange capacity (IEC) sulfonated polystyrene nanoparticles were synthesized by an emulsion copolymerization of styrene, divinyl benzene and sulfonated styrene (SS). The effects of varying the counterion of the sulfonated styrene monomer, the SS concentration, the surfactant and the additi...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2011-01, Vol.52 (2), p.297-306
Main Authors: Pitia, Emmanuel, Shaw, M.T., Weiss, R.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High ion-exchange capacity (IEC) sulfonated polystyrene nanoparticles were synthesized by an emulsion copolymerization of styrene, divinyl benzene and sulfonated styrene (SS). The effects of varying the counterion of the sulfonated styrene monomer, the SS concentration, the surfactant and the addition of a crosslinking agent on the ability to stabilize the emulsion nanoparticles to high IEC were studied. Water-insoluble nanoparticles, 20–160 nm in diameter, with IEC as high as 5.2 meq/g were achieved using sulfonated styrene with a quaternary alkyl ammonium cation, a non-ionic surfactant and a crosslinking agent in the emulsion formulation. That IEC corresponds to fully sulfonated crosslinked polystyrene. [Display omitted]
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2010.11.055