Loading…

Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding

The nitrogen depth profile in polycrystalline AISI 316L austenitic stainless steel after plasma nitriding at temperatures around 400 °C is analyzed by the “trapping–detrapping” model. This model considers the diffusion of nitrogen under the influence of trap sites formed by local chromium atoms. Nit...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2011-02, Vol.205 (10), p.3301-3306
Main Authors: Moskalioviene, T., Galdikas, A., Rivière, J.P., Pichon, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573
cites cdi_FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573
container_end_page 3306
container_issue 10
container_start_page 3301
container_title Surface & coatings technology
container_volume 205
creator Moskalioviene, T.
Galdikas, A.
Rivière, J.P.
Pichon, L.
description The nitrogen depth profile in polycrystalline AISI 316L austenitic stainless steel after plasma nitriding at temperatures around 400 °C is analyzed by the “trapping–detrapping” model. This model considers the diffusion of nitrogen under the influence of trap sites formed by local chromium atoms. Nitrogen depth profiles in polycrystalline AISI 316L steel simulated on the basis of this model are in good agreement with experimental nitrogen profiles. The enhanced nitrogen diffusivity as well as a plateau-type shape of nitrogen depth profile can be explained. The nitrogen diffusion coefficient at 400 °C is found to be D = 4.81 × 10 −12 cm 2/s and the diffusion pre-exponential factor D 0 (0.837 × 10 −3 cm 2/s) and detrapping activation energy E B (0.28 eV) were deduced from fitting experimental data. It is known that the nitrogen penetration depth (and nitrogen diffusivity) depends on the crystalline orientation and a tentative to take into account this anisotropy effect and describe nitrogen depth profiles in polycrystalline AISI 316L steel is proposed by using different diffusion coefficients characteristic for each crystallite orientation. ►Nitrogen mass transport mechanism in nitrided polycrystalline AISI 316L is analyzed. ►Effects of nitrogen diffusivity anisotropy in plasma nitrided AISI 316L are analyzed. ►The nitrogen diffusion model based on trapping–detrapping mass transport mechanisms.
doi_str_mv 10.1016/j.surfcoat.2010.11.060
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897210012405</els_id><sourcerecordid>861540014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573</originalsourceid><addsrcrecordid>eNqFkEGPFCEQhYnRxHH1LxguxlOP0DDQ3NxsXJ1kjAf1TJAuNkwYaCnaZP69jLN69URR9b1XqUfIa862nHH17rjFtQZfXNuO7NLkW6bYE7LhkzaDEFI_JRs27vQwGT0-Jy8Qj4wxro3ckOVzmSHF_EBLoDm2Wh4g0wUytOpaLJnG_i3p7OsZm0sdBXq7_7qngqsDdSs26LLoaZ_GnACxVwCJzmu92C7J4cn9sY5zb7wkz4JLCK8e3xvy_f7Dt7tPw-HLx_3d7WHwQss2mEkGFlSYRy2lBghccaaDNlpJPppRgZiNCrvJjCB-KK-08MEJ6efJC7PT4oa8vfoutfxcAZs9RfSQkstQVrST4jvZU5CdVFfS14JYIdilxpOrZ8uZvSRsj_ZvwvaSsOXc9oS78M3jCofepVBd9hH_qUcxTVJJ0bn3Vw76vb8iVIs-QvYwxwq-2bnE_636DRjnloE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861540014</pqid></control><display><type>article</type><title>Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding</title><source>Elsevier</source><creator>Moskalioviene, T. ; Galdikas, A. ; Rivière, J.P. ; Pichon, L.</creator><creatorcontrib>Moskalioviene, T. ; Galdikas, A. ; Rivière, J.P. ; Pichon, L.</creatorcontrib><description>The nitrogen depth profile in polycrystalline AISI 316L austenitic stainless steel after plasma nitriding at temperatures around 400 °C is analyzed by the “trapping–detrapping” model. This model considers the diffusion of nitrogen under the influence of trap sites formed by local chromium atoms. Nitrogen depth profiles in polycrystalline AISI 316L steel simulated on the basis of this model are in good agreement with experimental nitrogen profiles. The enhanced nitrogen diffusivity as well as a plateau-type shape of nitrogen depth profile can be explained. The nitrogen diffusion coefficient at 400 °C is found to be D = 4.81 × 10 −12 cm 2/s and the diffusion pre-exponential factor D 0 (0.837 × 10 −3 cm 2/s) and detrapping activation energy E B (0.28 eV) were deduced from fitting experimental data. It is known that the nitrogen penetration depth (and nitrogen diffusivity) depends on the crystalline orientation and a tentative to take into account this anisotropy effect and describe nitrogen depth profiles in polycrystalline AISI 316L steel is proposed by using different diffusion coefficients characteristic for each crystallite orientation. ►Nitrogen mass transport mechanism in nitrided polycrystalline AISI 316L is analyzed. ►Effects of nitrogen diffusivity anisotropy in plasma nitrided AISI 316L are analyzed. ►The nitrogen diffusion model based on trapping–detrapping mass transport mechanisms.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2010.11.060</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Applied sciences ; Austenitic stainless steel ; Austenitic stainless steels ; Chromium ; Cross-disciplinary physics: materials science; rheology ; Diffusion ; Diffusion coefficient ; Diffusivity ; Exact sciences and technology ; Heat resistant steels ; Heat treatment ; Ion nitriding ; Materials science ; Mathematical models ; Metals. Metallurgy ; Modelling ; Nitrogen diffusion ; Physics ; Plasma nitriding ; Production techniques ; Surface treatments ; Thermochemical treatment and diffusion treatment ; “Trapping–detrapping” model</subject><ispartof>Surface &amp; coatings technology, 2011-02, Vol.205 (10), p.3301-3306</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573</citedby><cites>FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23884643$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moskalioviene, T.</creatorcontrib><creatorcontrib>Galdikas, A.</creatorcontrib><creatorcontrib>Rivière, J.P.</creatorcontrib><creatorcontrib>Pichon, L.</creatorcontrib><title>Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding</title><title>Surface &amp; coatings technology</title><description>The nitrogen depth profile in polycrystalline AISI 316L austenitic stainless steel after plasma nitriding at temperatures around 400 °C is analyzed by the “trapping–detrapping” model. This model considers the diffusion of nitrogen under the influence of trap sites formed by local chromium atoms. Nitrogen depth profiles in polycrystalline AISI 316L steel simulated on the basis of this model are in good agreement with experimental nitrogen profiles. The enhanced nitrogen diffusivity as well as a plateau-type shape of nitrogen depth profile can be explained. The nitrogen diffusion coefficient at 400 °C is found to be D = 4.81 × 10 −12 cm 2/s and the diffusion pre-exponential factor D 0 (0.837 × 10 −3 cm 2/s) and detrapping activation energy E B (0.28 eV) were deduced from fitting experimental data. It is known that the nitrogen penetration depth (and nitrogen diffusivity) depends on the crystalline orientation and a tentative to take into account this anisotropy effect and describe nitrogen depth profiles in polycrystalline AISI 316L steel is proposed by using different diffusion coefficients characteristic for each crystallite orientation. ►Nitrogen mass transport mechanism in nitrided polycrystalline AISI 316L is analyzed. ►Effects of nitrogen diffusivity anisotropy in plasma nitrided AISI 316L are analyzed. ►The nitrogen diffusion model based on trapping–detrapping mass transport mechanisms.</description><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Chromium</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusivity</subject><subject>Exact sciences and technology</subject><subject>Heat resistant steels</subject><subject>Heat treatment</subject><subject>Ion nitriding</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Modelling</subject><subject>Nitrogen diffusion</subject><subject>Physics</subject><subject>Plasma nitriding</subject><subject>Production techniques</subject><subject>Surface treatments</subject><subject>Thermochemical treatment and diffusion treatment</subject><subject>“Trapping–detrapping” model</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEGPFCEQhYnRxHH1LxguxlOP0DDQ3NxsXJ1kjAf1TJAuNkwYaCnaZP69jLN69URR9b1XqUfIa862nHH17rjFtQZfXNuO7NLkW6bYE7LhkzaDEFI_JRs27vQwGT0-Jy8Qj4wxro3ckOVzmSHF_EBLoDm2Wh4g0wUytOpaLJnG_i3p7OsZm0sdBXq7_7qngqsDdSs26LLoaZ_GnACxVwCJzmu92C7J4cn9sY5zb7wkz4JLCK8e3xvy_f7Dt7tPw-HLx_3d7WHwQss2mEkGFlSYRy2lBghccaaDNlpJPppRgZiNCrvJjCB-KK-08MEJ6efJC7PT4oa8vfoutfxcAZs9RfSQkstQVrST4jvZU5CdVFfS14JYIdilxpOrZ8uZvSRsj_ZvwvaSsOXc9oS78M3jCofepVBd9hH_qUcxTVJJ0bn3Vw76vb8iVIs-QvYwxwq-2bnE_636DRjnloE</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Moskalioviene, T.</creator><creator>Galdikas, A.</creator><creator>Rivière, J.P.</creator><creator>Pichon, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110215</creationdate><title>Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding</title><author>Moskalioviene, T. ; Galdikas, A. ; Rivière, J.P. ; Pichon, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Chromium</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusivity</topic><topic>Exact sciences and technology</topic><topic>Heat resistant steels</topic><topic>Heat treatment</topic><topic>Ion nitriding</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Modelling</topic><topic>Nitrogen diffusion</topic><topic>Physics</topic><topic>Plasma nitriding</topic><topic>Production techniques</topic><topic>Surface treatments</topic><topic>Thermochemical treatment and diffusion treatment</topic><topic>“Trapping–detrapping” model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskalioviene, T.</creatorcontrib><creatorcontrib>Galdikas, A.</creatorcontrib><creatorcontrib>Rivière, J.P.</creatorcontrib><creatorcontrib>Pichon, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskalioviene, T.</au><au>Galdikas, A.</au><au>Rivière, J.P.</au><au>Pichon, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2011-02-15</date><risdate>2011</risdate><volume>205</volume><issue>10</issue><spage>3301</spage><epage>3306</epage><pages>3301-3306</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The nitrogen depth profile in polycrystalline AISI 316L austenitic stainless steel after plasma nitriding at temperatures around 400 °C is analyzed by the “trapping–detrapping” model. This model considers the diffusion of nitrogen under the influence of trap sites formed by local chromium atoms. Nitrogen depth profiles in polycrystalline AISI 316L steel simulated on the basis of this model are in good agreement with experimental nitrogen profiles. The enhanced nitrogen diffusivity as well as a plateau-type shape of nitrogen depth profile can be explained. The nitrogen diffusion coefficient at 400 °C is found to be D = 4.81 × 10 −12 cm 2/s and the diffusion pre-exponential factor D 0 (0.837 × 10 −3 cm 2/s) and detrapping activation energy E B (0.28 eV) were deduced from fitting experimental data. It is known that the nitrogen penetration depth (and nitrogen diffusivity) depends on the crystalline orientation and a tentative to take into account this anisotropy effect and describe nitrogen depth profiles in polycrystalline AISI 316L steel is proposed by using different diffusion coefficients characteristic for each crystallite orientation. ►Nitrogen mass transport mechanism in nitrided polycrystalline AISI 316L is analyzed. ►Effects of nitrogen diffusivity anisotropy in plasma nitrided AISI 316L are analyzed. ►The nitrogen diffusion model based on trapping–detrapping mass transport mechanisms.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2010.11.060</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2011-02, Vol.205 (10), p.3301-3306
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_861540014
source Elsevier
subjects Anisotropy
Applied sciences
Austenitic stainless steel
Austenitic stainless steels
Chromium
Cross-disciplinary physics: materials science
rheology
Diffusion
Diffusion coefficient
Diffusivity
Exact sciences and technology
Heat resistant steels
Heat treatment
Ion nitriding
Materials science
Mathematical models
Metals. Metallurgy
Modelling
Nitrogen diffusion
Physics
Plasma nitriding
Production techniques
Surface treatments
Thermochemical treatment and diffusion treatment
“Trapping–detrapping” model
title Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20nitrogen%20penetration%20in%20polycrystalline%20AISI%20316L%20austenitic%20stainless%20steel%20during%20plasma%20nitriding&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Moskalioviene,%20T.&rft.date=2011-02-15&rft.volume=205&rft.issue=10&rft.spage=3301&rft.epage=3306&rft.pages=3301-3306&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2010.11.060&rft_dat=%3Cproquest_cross%3E861540014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-984f0f6fd27447eef16107f7976412926e3d96f5892e3b6c673cfa34cd8c39573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861540014&rft_id=info:pmid/&rfr_iscdi=true