Loading…
Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet
A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and ener...
Saved in:
Published in: | Optics and laser technology 2011-06, Vol.43 (4), p.870-873 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3 |
container_end_page | 873 |
container_issue | 4 |
container_start_page | 870 |
container_title | Optics and laser technology |
container_volume | 43 |
creator | Wang, Renping Lei, Yongping Shi, Yaowu |
description | A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed. |
doi_str_mv | 10.1016/j.optlastec.2010.10.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399210002641</els_id><sourcerecordid>861540474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEuPjN5Abp5akSZPuOE18SRNc4Bylicsy0nYkKWj_nowhrlxsy_b7Wn4QuqKkpISKm005bpPXMYEpK_LTLQmRR2hGGzkvqprXx2hGCCMFm8-rU3QW44YQwkXNZqh_mnoIzmiPo-snr5MbBzx2OAU9RAdDwgn6LQSdpgC4c-AttlNwwxvORyHgd9itRw_4K0_23axlhOOYtBs8xJgrgOy-BkgX6KTTPsLlbz5Hr3e3L8uHYvV8_7hcrArDuEyFaFttKaO1tKJpdFXrSnYiBwGcsrZtGsa6itqKEcFlk__sWiZMZ3lla5CanaPrg-82jB8TxKR6Fw14rwcYp6gaQWtOuOR5Ux42TRhjDNCpbXC9DjtFidrzVRv1x1ft-e4HmW9WLg5KyI98OggqmszLgHUBTFJ2dP96fAP4yYoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861540474</pqid></control><display><type>article</type><title>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</title><source>Elsevier</source><creator>Wang, Renping ; Lei, Yongping ; Shi, Yaowu</creator><creatorcontrib>Wang, Renping ; Lei, Yongping ; Shi, Yaowu</creatorcontrib><description>A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2010.10.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evaporation ; Keyholes ; Laser beam welding ; Laser welding ; Mathematical models ; Melting ; Numerical simulation ; Temperature distribution ; Temperature field ; Weld metal pool ; Welding</subject><ispartof>Optics and laser technology, 2011-06, Vol.43 (4), p.870-873</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</citedby><cites>FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Renping</creatorcontrib><creatorcontrib>Lei, Yongping</creatorcontrib><creatorcontrib>Shi, Yaowu</creatorcontrib><title>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</title><title>Optics and laser technology</title><description>A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.</description><subject>Evaporation</subject><subject>Keyholes</subject><subject>Laser beam welding</subject><subject>Laser welding</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Numerical simulation</subject><subject>Temperature distribution</subject><subject>Temperature field</subject><subject>Weld metal pool</subject><subject>Welding</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEuPjN5Abp5akSZPuOE18SRNc4Bylicsy0nYkKWj_nowhrlxsy_b7Wn4QuqKkpISKm005bpPXMYEpK_LTLQmRR2hGGzkvqprXx2hGCCMFm8-rU3QW44YQwkXNZqh_mnoIzmiPo-snr5MbBzx2OAU9RAdDwgn6LQSdpgC4c-AttlNwwxvORyHgd9itRw_4K0_23axlhOOYtBs8xJgrgOy-BkgX6KTTPsLlbz5Hr3e3L8uHYvV8_7hcrArDuEyFaFttKaO1tKJpdFXrSnYiBwGcsrZtGsa6itqKEcFlk__sWiZMZ3lla5CanaPrg-82jB8TxKR6Fw14rwcYp6gaQWtOuOR5Ux42TRhjDNCpbXC9DjtFidrzVRv1x1ft-e4HmW9WLg5KyI98OggqmszLgHUBTFJ2dP96fAP4yYoX</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Wang, Renping</creator><creator>Lei, Yongping</creator><creator>Shi, Yaowu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</title><author>Wang, Renping ; Lei, Yongping ; Shi, Yaowu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Evaporation</topic><topic>Keyholes</topic><topic>Laser beam welding</topic><topic>Laser welding</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Numerical simulation</topic><topic>Temperature distribution</topic><topic>Temperature field</topic><topic>Weld metal pool</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Renping</creatorcontrib><creatorcontrib>Lei, Yongping</creatorcontrib><creatorcontrib>Shi, Yaowu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Renping</au><au>Lei, Yongping</au><au>Shi, Yaowu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</atitle><jtitle>Optics and laser technology</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>43</volume><issue>4</issue><spage>870</spage><epage>873</epage><pages>870-873</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2010.10.007</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2011-06, Vol.43 (4), p.870-873 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_miscellaneous_861540474 |
source | Elsevier |
subjects | Evaporation Keyholes Laser beam welding Laser welding Mathematical models Melting Numerical simulation Temperature distribution Temperature field Weld metal pool Welding |
title | Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20transient%20temperature%20field%20during%20laser%20keyhole%20welding%20of%20304%20stainless%20steel%20sheet&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Wang,%20Renping&rft.date=2011-06-01&rft.volume=43&rft.issue=4&rft.spage=870&rft.epage=873&rft.pages=870-873&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2010.10.007&rft_dat=%3Cproquest_cross%3E861540474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861540474&rft_id=info:pmid/&rfr_iscdi=true |