Loading…

Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet

A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and ener...

Full description

Saved in:
Bibliographic Details
Published in:Optics and laser technology 2011-06, Vol.43 (4), p.870-873
Main Authors: Wang, Renping, Lei, Yongping, Shi, Yaowu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3
cites cdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3
container_end_page 873
container_issue 4
container_start_page 870
container_title Optics and laser technology
container_volume 43
creator Wang, Renping
Lei, Yongping
Shi, Yaowu
description A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.
doi_str_mv 10.1016/j.optlastec.2010.10.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399210002641</els_id><sourcerecordid>861540474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEuPjN5Abp5akSZPuOE18SRNc4Bylicsy0nYkKWj_nowhrlxsy_b7Wn4QuqKkpISKm005bpPXMYEpK_LTLQmRR2hGGzkvqprXx2hGCCMFm8-rU3QW44YQwkXNZqh_mnoIzmiPo-snr5MbBzx2OAU9RAdDwgn6LQSdpgC4c-AttlNwwxvORyHgd9itRw_4K0_23axlhOOYtBs8xJgrgOy-BkgX6KTTPsLlbz5Hr3e3L8uHYvV8_7hcrArDuEyFaFttKaO1tKJpdFXrSnYiBwGcsrZtGsa6itqKEcFlk__sWiZMZ3lla5CanaPrg-82jB8TxKR6Fw14rwcYp6gaQWtOuOR5Ux42TRhjDNCpbXC9DjtFidrzVRv1x1ft-e4HmW9WLg5KyI98OggqmszLgHUBTFJ2dP96fAP4yYoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861540474</pqid></control><display><type>article</type><title>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</title><source>Elsevier</source><creator>Wang, Renping ; Lei, Yongping ; Shi, Yaowu</creator><creatorcontrib>Wang, Renping ; Lei, Yongping ; Shi, Yaowu</creatorcontrib><description>A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2010.10.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evaporation ; Keyholes ; Laser beam welding ; Laser welding ; Mathematical models ; Melting ; Numerical simulation ; Temperature distribution ; Temperature field ; Weld metal pool ; Welding</subject><ispartof>Optics and laser technology, 2011-06, Vol.43 (4), p.870-873</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</citedby><cites>FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Renping</creatorcontrib><creatorcontrib>Lei, Yongping</creatorcontrib><creatorcontrib>Shi, Yaowu</creatorcontrib><title>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</title><title>Optics and laser technology</title><description>A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.</description><subject>Evaporation</subject><subject>Keyholes</subject><subject>Laser beam welding</subject><subject>Laser welding</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Numerical simulation</subject><subject>Temperature distribution</subject><subject>Temperature field</subject><subject>Weld metal pool</subject><subject>Welding</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEuPjN5Abp5akSZPuOE18SRNc4Bylicsy0nYkKWj_nowhrlxsy_b7Wn4QuqKkpISKm005bpPXMYEpK_LTLQmRR2hGGzkvqprXx2hGCCMFm8-rU3QW44YQwkXNZqh_mnoIzmiPo-snr5MbBzx2OAU9RAdDwgn6LQSdpgC4c-AttlNwwxvORyHgd9itRw_4K0_23axlhOOYtBs8xJgrgOy-BkgX6KTTPsLlbz5Hr3e3L8uHYvV8_7hcrArDuEyFaFttKaO1tKJpdFXrSnYiBwGcsrZtGsa6itqKEcFlk__sWiZMZ3lla5CanaPrg-82jB8TxKR6Fw14rwcYp6gaQWtOuOR5Ux42TRhjDNCpbXC9DjtFidrzVRv1x1ft-e4HmW9WLg5KyI98OggqmszLgHUBTFJ2dP96fAP4yYoX</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Wang, Renping</creator><creator>Lei, Yongping</creator><creator>Shi, Yaowu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</title><author>Wang, Renping ; Lei, Yongping ; Shi, Yaowu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Evaporation</topic><topic>Keyholes</topic><topic>Laser beam welding</topic><topic>Laser welding</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Numerical simulation</topic><topic>Temperature distribution</topic><topic>Temperature field</topic><topic>Weld metal pool</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Renping</creatorcontrib><creatorcontrib>Lei, Yongping</creatorcontrib><creatorcontrib>Shi, Yaowu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Renping</au><au>Lei, Yongping</au><au>Shi, Yaowu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet</atitle><jtitle>Optics and laser technology</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>43</volume><issue>4</issue><spage>870</spage><epage>873</epage><pages>870-873</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2010.10.007</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3992
ispartof Optics and laser technology, 2011-06, Vol.43 (4), p.870-873
issn 0030-3992
1879-2545
language eng
recordid cdi_proquest_miscellaneous_861540474
source Elsevier
subjects Evaporation
Keyholes
Laser beam welding
Laser welding
Mathematical models
Melting
Numerical simulation
Temperature distribution
Temperature field
Weld metal pool
Welding
title Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20transient%20temperature%20field%20during%20laser%20keyhole%20welding%20of%20304%20stainless%20steel%20sheet&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Wang,%20Renping&rft.date=2011-06-01&rft.volume=43&rft.issue=4&rft.spage=870&rft.epage=873&rft.pages=870-873&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2010.10.007&rft_dat=%3Cproquest_cross%3E861540474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-6bbad13157d688a25a27f6a276e413bb8833f21d2306478187fb36cfd42d5e7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861540474&rft_id=info:pmid/&rfr_iscdi=true