Loading…

An Automated Computerized Auscultation and Diagnostic System for Pulmonary Diseases

Respiratory sounds are of significance as they provide valuable information on the health of the respiratory system. Sounds emanating from the respiratory system are uneven, and vary significantly from one individual to another and for the same individual over time. In and of themselves they are not...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems 2010-12, Vol.34 (6), p.1149-1155
Main Authors: Abbas, Ali, Fahim, Atef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Respiratory sounds are of significance as they provide valuable information on the health of the respiratory system. Sounds emanating from the respiratory system are uneven, and vary significantly from one individual to another and for the same individual over time. In and of themselves they are not a direct proof of an ailment, but rather an inference that one exists. Auscultation diagnosis is an art/skill that is acquired and honed by practice; hence it is common to seek confirmation using invasive and potentially harmful imaging diagnosis techniques like X-rays. This research focuses on developing an automated auscultation diagnostic system that overcomes the limitations inherent in traditional auscultation techniques. The system uses a front end sound signal filtering module that uses adaptive Neural Networks (NN) noise cancellation to eliminate spurious sound signals like those from the heart, intestine, and ambient noise. To date, the core diagnosis module is capable of identifying lung sounds from non-lung sounds, normal lung sounds from abnormal ones, and identifying wheezes from crackles as indicators of different ailments.
ISSN:0148-5598
1573-689X
DOI:10.1007/s10916-009-9334-1