Loading…

Non-self-conjugate model formulation of the Pekeris boundary problem

The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of...

Full description

Saved in:
Bibliographic Details
Published in:Doklady earth sciences 2010-10, Vol.434 (2), p.1342-1345
Main Authors: Kasatkin, B. A., Zlobina, N. V.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1345
container_issue 2
container_start_page 1342
container_title Doklady earth sciences
container_volume 434
creator Kasatkin, B. A.
Zlobina, N. V.
description The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.
doi_str_mv 10.1134/S1028334X10100119
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359998386</galeid><sourcerecordid>A359998386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-695145b09526428c93c515d549530bc554f36eaee193462575aeedbfef70c9cd3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQQIsouK7-AG_Fi166ZppM2hxl_QRRQQVvpU0na9e2WZP24L83ywqCouSQIfPeJJmJokNgMwAuTh-BpTnn4gUYMAagtqIJIIck5yi2QxzSyTq_G-15v2RMCIFqEp3f2T7x1JpE2345LsqB4s7W1MbGum5sy6GxfWxNPLxS_EBv5BofV3bs69J9xCtnq5a6_WjHlK2ng699Gj1fXjzNr5Pb-6ub-dltonkGQyIVgsCKKUylSHOtuEbAGoVCziqNKAyXVBKB4kKmmGGI68qQyZhWuubT6HhTN9z7PpIfiq7xmtq27MmOvsgloGCKp4E8-ZcEmYHIBEoI6NEPdGlH14d_FDmTKeRMrKHZBlqULRVNb-zgSh1WTV0TOkemCednHJVSOc9lEGAjaGe9d2SKlWu60LMCWLGeWPFrYsFJN44PbL8g9_2Sv6VPqiaVxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>806218041</pqid></control><display><type>article</type><title>Non-self-conjugate model formulation of the Pekeris boundary problem</title><source>Springer Link</source><creator>Kasatkin, B. A. ; Zlobina, N. V.</creator><creatorcontrib>Kasatkin, B. A. ; Zlobina, N. V.</creatorcontrib><description>The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.</description><identifier>ISSN: 1028-334X</identifier><identifier>EISSN: 1531-8354</identifier><identifier>DOI: 10.1134/S1028334X10100119</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Analysis ; Boundaries ; Boundary conditions ; Boundary layer ; Earth and Environmental Science ; Earth Sciences ; Mathematical models ; Oceanology ; Waveguides</subject><ispartof>Doklady earth sciences, 2010-10, Vol.434 (2), p.1342-1345</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kasatkin, B. A.</creatorcontrib><creatorcontrib>Zlobina, N. V.</creatorcontrib><title>Non-self-conjugate model formulation of the Pekeris boundary problem</title><title>Doklady earth sciences</title><addtitle>Dokl. Earth Sc</addtitle><description>The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.</description><subject>Analysis</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Mathematical models</subject><subject>Oceanology</subject><subject>Waveguides</subject><issn>1028-334X</issn><issn>1531-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQQIsouK7-AG_Fi166ZppM2hxl_QRRQQVvpU0na9e2WZP24L83ywqCouSQIfPeJJmJokNgMwAuTh-BpTnn4gUYMAagtqIJIIck5yi2QxzSyTq_G-15v2RMCIFqEp3f2T7x1JpE2345LsqB4s7W1MbGum5sy6GxfWxNPLxS_EBv5BofV3bs69J9xCtnq5a6_WjHlK2ng699Gj1fXjzNr5Pb-6ub-dltonkGQyIVgsCKKUylSHOtuEbAGoVCziqNKAyXVBKB4kKmmGGI68qQyZhWuubT6HhTN9z7PpIfiq7xmtq27MmOvsgloGCKp4E8-ZcEmYHIBEoI6NEPdGlH14d_FDmTKeRMrKHZBlqULRVNb-zgSh1WTV0TOkemCednHJVSOc9lEGAjaGe9d2SKlWu60LMCWLGeWPFrYsFJN44PbL8g9_2Sv6VPqiaVxg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kasatkin, B. A.</creator><creator>Zlobina, N. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101001</creationdate><title>Non-self-conjugate model formulation of the Pekeris boundary problem</title><author>Kasatkin, B. A. ; Zlobina, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-695145b09526428c93c515d549530bc554f36eaee193462575aeedbfef70c9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Mathematical models</topic><topic>Oceanology</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasatkin, B. A.</creatorcontrib><creatorcontrib>Zlobina, N. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Doklady earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasatkin, B. A.</au><au>Zlobina, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-self-conjugate model formulation of the Pekeris boundary problem</atitle><jtitle>Doklady earth sciences</jtitle><stitle>Dokl. Earth Sc</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>434</volume><issue>2</issue><spage>1342</spage><epage>1345</epage><pages>1342-1345</pages><issn>1028-334X</issn><eissn>1531-8354</eissn><abstract>The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1028334X10100119</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1028-334X
ispartof Doklady earth sciences, 2010-10, Vol.434 (2), p.1342-1345
issn 1028-334X
1531-8354
language eng
recordid cdi_proquest_miscellaneous_861540932
source Springer Link
subjects Analysis
Boundaries
Boundary conditions
Boundary layer
Earth and Environmental Science
Earth Sciences
Mathematical models
Oceanology
Waveguides
title Non-self-conjugate model formulation of the Pekeris boundary problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-self-conjugate%20model%20formulation%20of%20the%20Pekeris%20boundary%20problem&rft.jtitle=Doklady%20earth%20sciences&rft.au=Kasatkin,%20B.%20A.&rft.date=2010-10-01&rft.volume=434&rft.issue=2&rft.spage=1342&rft.epage=1345&rft.pages=1342-1345&rft.issn=1028-334X&rft.eissn=1531-8354&rft_id=info:doi/10.1134/S1028334X10100119&rft_dat=%3Cgale_proqu%3EA359998386%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-695145b09526428c93c515d549530bc554f36eaee193462575aeedbfef70c9cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=806218041&rft_id=info:pmid/&rft_galeid=A359998386&rfr_iscdi=true