Loading…
Non-self-conjugate model formulation of the Pekeris boundary problem
The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of...
Saved in:
Published in: | Doklady earth sciences 2010-10, Vol.434 (2), p.1342-1345 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1345 |
container_issue | 2 |
container_start_page | 1342 |
container_title | Doklady earth sciences |
container_volume | 434 |
creator | Kasatkin, B. A. Zlobina, N. V. |
description | The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space. |
doi_str_mv | 10.1134/S1028334X10100119 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359998386</galeid><sourcerecordid>A359998386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-695145b09526428c93c515d549530bc554f36eaee193462575aeedbfef70c9cd3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQQIsouK7-AG_Fi166ZppM2hxl_QRRQQVvpU0na9e2WZP24L83ywqCouSQIfPeJJmJokNgMwAuTh-BpTnn4gUYMAagtqIJIIck5yi2QxzSyTq_G-15v2RMCIFqEp3f2T7x1JpE2345LsqB4s7W1MbGum5sy6GxfWxNPLxS_EBv5BofV3bs69J9xCtnq5a6_WjHlK2ng699Gj1fXjzNr5Pb-6ub-dltonkGQyIVgsCKKUylSHOtuEbAGoVCziqNKAyXVBKB4kKmmGGI68qQyZhWuubT6HhTN9z7PpIfiq7xmtq27MmOvsgloGCKp4E8-ZcEmYHIBEoI6NEPdGlH14d_FDmTKeRMrKHZBlqULRVNb-zgSh1WTV0TOkemCednHJVSOc9lEGAjaGe9d2SKlWu60LMCWLGeWPFrYsFJN44PbL8g9_2Sv6VPqiaVxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>806218041</pqid></control><display><type>article</type><title>Non-self-conjugate model formulation of the Pekeris boundary problem</title><source>Springer Link</source><creator>Kasatkin, B. A. ; Zlobina, N. V.</creator><creatorcontrib>Kasatkin, B. A. ; Zlobina, N. V.</creatorcontrib><description>The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.</description><identifier>ISSN: 1028-334X</identifier><identifier>EISSN: 1531-8354</identifier><identifier>DOI: 10.1134/S1028334X10100119</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Analysis ; Boundaries ; Boundary conditions ; Boundary layer ; Earth and Environmental Science ; Earth Sciences ; Mathematical models ; Oceanology ; Waveguides</subject><ispartof>Doklady earth sciences, 2010-10, Vol.434 (2), p.1342-1345</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kasatkin, B. A.</creatorcontrib><creatorcontrib>Zlobina, N. V.</creatorcontrib><title>Non-self-conjugate model formulation of the Pekeris boundary problem</title><title>Doklady earth sciences</title><addtitle>Dokl. Earth Sc</addtitle><description>The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.</description><subject>Analysis</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Mathematical models</subject><subject>Oceanology</subject><subject>Waveguides</subject><issn>1028-334X</issn><issn>1531-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQQIsouK7-AG_Fi166ZppM2hxl_QRRQQVvpU0na9e2WZP24L83ywqCouSQIfPeJJmJokNgMwAuTh-BpTnn4gUYMAagtqIJIIck5yi2QxzSyTq_G-15v2RMCIFqEp3f2T7x1JpE2345LsqB4s7W1MbGum5sy6GxfWxNPLxS_EBv5BofV3bs69J9xCtnq5a6_WjHlK2ng699Gj1fXjzNr5Pb-6ub-dltonkGQyIVgsCKKUylSHOtuEbAGoVCziqNKAyXVBKB4kKmmGGI68qQyZhWuubT6HhTN9z7PpIfiq7xmtq27MmOvsgloGCKp4E8-ZcEmYHIBEoI6NEPdGlH14d_FDmTKeRMrKHZBlqULRVNb-zgSh1WTV0TOkemCednHJVSOc9lEGAjaGe9d2SKlWu60LMCWLGeWPFrYsFJN44PbL8g9_2Sv6VPqiaVxg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kasatkin, B. A.</creator><creator>Zlobina, N. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101001</creationdate><title>Non-self-conjugate model formulation of the Pekeris boundary problem</title><author>Kasatkin, B. A. ; Zlobina, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-695145b09526428c93c515d549530bc554f36eaee193462575aeedbfef70c9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Mathematical models</topic><topic>Oceanology</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasatkin, B. A.</creatorcontrib><creatorcontrib>Zlobina, N. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Doklady earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasatkin, B. A.</au><au>Zlobina, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-self-conjugate model formulation of the Pekeris boundary problem</atitle><jtitle>Doklady earth sciences</jtitle><stitle>Dokl. Earth Sc</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>434</volume><issue>2</issue><spage>1342</spage><epage>1345</epage><pages>1342-1345</pages><issn>1028-334X</issn><eissn>1531-8354</eissn><abstract>The theory of wave processes in layered media developed in classical works [13] is based on the solution of the key boundary problem of hydroacous tic science formulated and solved by Pekeris in [1] for the system: homogeneous fluid layerhomogeneous fluid half space. A characteristic peculiarity of the model formulation suggested in [13] is the fact that boundary conditions at the interface waveguidehalf space are formulated as identical conditions of conti nuity by pressure and normal components of the oscil lation velocity with respect to the horizontal coordi nate (local conditions of (p, vz) continuity), while the model formulation appears self conjugate. As a consequence of the assumed model formulation, the solu tion has the form of diverging waves with a singularity O(r1) for the radial component of the oscillation velocity at the symmetry axis in the half space.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1028334X10100119</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1028-334X |
ispartof | Doklady earth sciences, 2010-10, Vol.434 (2), p.1342-1345 |
issn | 1028-334X 1531-8354 |
language | eng |
recordid | cdi_proquest_miscellaneous_861540932 |
source | Springer Link |
subjects | Analysis Boundaries Boundary conditions Boundary layer Earth and Environmental Science Earth Sciences Mathematical models Oceanology Waveguides |
title | Non-self-conjugate model formulation of the Pekeris boundary problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-self-conjugate%20model%20formulation%20of%20the%20Pekeris%20boundary%20problem&rft.jtitle=Doklady%20earth%20sciences&rft.au=Kasatkin,%20B.%20A.&rft.date=2010-10-01&rft.volume=434&rft.issue=2&rft.spage=1342&rft.epage=1345&rft.pages=1342-1345&rft.issn=1028-334X&rft.eissn=1531-8354&rft_id=info:doi/10.1134/S1028334X10100119&rft_dat=%3Cgale_proqu%3EA359998386%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-695145b09526428c93c515d549530bc554f36eaee193462575aeedbfef70c9cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=806218041&rft_id=info:pmid/&rft_galeid=A359998386&rfr_iscdi=true |