Loading…
Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel
In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations...
Saved in:
Published in: | The International journal of heat and fluid flow 2011-02, Vol.32 (1), p.107-116 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923 |
container_end_page | 116 |
container_issue | 1 |
container_start_page | 107 |
container_title | The International journal of heat and fluid flow |
container_volume | 32 |
creator | Kalteh, Mohammad Abbassi, Abbas Saffar-Avval, Majid Harting, Jens |
description | In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly. |
doi_str_mv | 10.1016/j.ijheatfluidflow.2010.08.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X10001347</els_id><sourcerecordid>1671223790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</originalsourceid><addsrcrecordid>eNqNkb1uHCEUhVEUS9nYeQcaK2lmfYHZGaZwEVn-kyylceEOMcxFy4aBDczYSud38BvmScJ6bRcpIlcg7sc5uucQcsxgyYA1J5ul26xRT9bPbrA-Piw5lBnIJQD7QBZMtl3FeSs_kgWwmlctb-8-kc85bwCggbpdkJ_ns8fkdPjz-PR6pdNDrLZrnZGGeSxPRnua3Th7PbkYaLQ06BCfbanXows6URuTwYGaGO7RPGMuUE1HZ1I0ax0C-iNyYLXP-OXlPCS3F-e3Z1fVzY_L67PvN5WpuZwqWRvDaw6Gg2j6lTBNA1xabQaOAxoxDCtdD8JYbKCXEnvgq170VtYd6zsuDsnXvew2xV8z5kmNLhv0XgeMc1ayYasaurYr5Lf_kqxpGeei7aCgp3u0rJNzQqu2yY06_VYM1K4NtVH_tKF2bSiQqrRR_h-_WOlc4rRJB-PymwgXkjEhdtzlnsMS0L3DpLJxGEq0LpVc1RDdOx3_AuZJrXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671223790</pqid></control><display><type>article</type><title>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kalteh, Mohammad ; Abbassi, Abbas ; Saffar-Avval, Majid ; Harting, Jens</creator><creatorcontrib>Kalteh, Mohammad ; Abbassi, Abbas ; Saffar-Avval, Majid ; Harting, Jens</creatorcontrib><description>In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2010.08.001</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Chemistry ; Colloidal state and disperse state ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; General and physical chemistry ; Heat transfer ; Laminar ; Mathematical models ; Microchannel ; Microchannels ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanostructure ; Phases ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Two-phase</subject><ispartof>The International journal of heat and fluid flow, 2011-02, Vol.32 (1), p.107-116</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</citedby><cites>FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23811331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalteh, Mohammad</creatorcontrib><creatorcontrib>Abbassi, Abbas</creatorcontrib><creatorcontrib>Saffar-Avval, Majid</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><title>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</title><title>The International journal of heat and fluid flow</title><description>In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Laminar</subject><subject>Mathematical models</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Phases</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Two-phase</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkb1uHCEUhVEUS9nYeQcaK2lmfYHZGaZwEVn-kyylceEOMcxFy4aBDczYSud38BvmScJ6bRcpIlcg7sc5uucQcsxgyYA1J5ul26xRT9bPbrA-Piw5lBnIJQD7QBZMtl3FeSs_kgWwmlctb-8-kc85bwCggbpdkJ_ns8fkdPjz-PR6pdNDrLZrnZGGeSxPRnua3Th7PbkYaLQ06BCfbanXows6URuTwYGaGO7RPGMuUE1HZ1I0ax0C-iNyYLXP-OXlPCS3F-e3Z1fVzY_L67PvN5WpuZwqWRvDaw6Gg2j6lTBNA1xabQaOAxoxDCtdD8JYbKCXEnvgq170VtYd6zsuDsnXvew2xV8z5kmNLhv0XgeMc1ayYasaurYr5Lf_kqxpGeei7aCgp3u0rJNzQqu2yY06_VYM1K4NtVH_tKF2bSiQqrRR_h-_WOlc4rRJB-PymwgXkjEhdtzlnsMS0L3DpLJxGEq0LpVc1RDdOx3_AuZJrXA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Kalteh, Mohammad</creator><creator>Abbassi, Abbas</creator><creator>Saffar-Avval, Majid</creator><creator>Harting, Jens</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</title><author>Kalteh, Mohammad ; Abbassi, Abbas ; Saffar-Avval, Majid ; Harting, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Laminar</topic><topic>Mathematical models</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Phases</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Two-phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalteh, Mohammad</creatorcontrib><creatorcontrib>Abbassi, Abbas</creatorcontrib><creatorcontrib>Saffar-Avval, Majid</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalteh, Mohammad</au><au>Abbassi, Abbas</au><au>Saffar-Avval, Majid</au><au>Harting, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>32</volume><issue>1</issue><spage>107</spage><epage>116</epage><pages>107-116</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2010.08.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-727X |
ispartof | The International journal of heat and fluid flow, 2011-02, Vol.32 (1), p.107-116 |
issn | 0142-727X 1879-2278 |
language | eng |
recordid | cdi_proquest_miscellaneous_861540979 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Chemistry Colloidal state and disperse state Computer simulation Condensed matter: structure, mechanical and thermal properties Energy Energy. Thermal use of fuels Exact sciences and technology Fluid flow General and physical chemistry Heat transfer Laminar Mathematical models Microchannel Microchannels Nanocomposites Nanofluid Nanofluids Nanomaterials Nanostructure Phases Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Two-phase |
title | Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eulerian%E2%80%93Eulerian%20two-phase%20numerical%20simulation%20of%20nanofluid%20laminar%20forced%20convection%20in%20a%20microchannel&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Kalteh,%20Mohammad&rft.date=2011-02-01&rft.volume=32&rft.issue=1&rft.spage=107&rft.epage=116&rft.pages=107-116&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2010.08.001&rft_dat=%3Cproquest_cross%3E1671223790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671223790&rft_id=info:pmid/&rfr_iscdi=true |