Loading…

Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel

In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of heat and fluid flow 2011-02, Vol.32 (1), p.107-116
Main Authors: Kalteh, Mohammad, Abbassi, Abbas, Saffar-Avval, Majid, Harting, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923
cites cdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923
container_end_page 116
container_issue 1
container_start_page 107
container_title The International journal of heat and fluid flow
container_volume 32
creator Kalteh, Mohammad
Abbassi, Abbas
Saffar-Avval, Majid
Harting, Jens
description In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.
doi_str_mv 10.1016/j.ijheatfluidflow.2010.08.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861540979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X10001347</els_id><sourcerecordid>1671223790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</originalsourceid><addsrcrecordid>eNqNkb1uHCEUhVEUS9nYeQcaK2lmfYHZGaZwEVn-kyylceEOMcxFy4aBDczYSud38BvmScJ6bRcpIlcg7sc5uucQcsxgyYA1J5ul26xRT9bPbrA-Piw5lBnIJQD7QBZMtl3FeSs_kgWwmlctb-8-kc85bwCggbpdkJ_ns8fkdPjz-PR6pdNDrLZrnZGGeSxPRnua3Th7PbkYaLQ06BCfbanXows6URuTwYGaGO7RPGMuUE1HZ1I0ax0C-iNyYLXP-OXlPCS3F-e3Z1fVzY_L67PvN5WpuZwqWRvDaw6Gg2j6lTBNA1xabQaOAxoxDCtdD8JYbKCXEnvgq170VtYd6zsuDsnXvew2xV8z5kmNLhv0XgeMc1ayYasaurYr5Lf_kqxpGeei7aCgp3u0rJNzQqu2yY06_VYM1K4NtVH_tKF2bSiQqrRR_h-_WOlc4rRJB-PymwgXkjEhdtzlnsMS0L3DpLJxGEq0LpVc1RDdOx3_AuZJrXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671223790</pqid></control><display><type>article</type><title>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kalteh, Mohammad ; Abbassi, Abbas ; Saffar-Avval, Majid ; Harting, Jens</creator><creatorcontrib>Kalteh, Mohammad ; Abbassi, Abbas ; Saffar-Avval, Majid ; Harting, Jens</creatorcontrib><description>In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2010.08.001</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Chemistry ; Colloidal state and disperse state ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; General and physical chemistry ; Heat transfer ; Laminar ; Mathematical models ; Microchannel ; Microchannels ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanostructure ; Phases ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Two-phase</subject><ispartof>The International journal of heat and fluid flow, 2011-02, Vol.32 (1), p.107-116</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</citedby><cites>FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23811331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalteh, Mohammad</creatorcontrib><creatorcontrib>Abbassi, Abbas</creatorcontrib><creatorcontrib>Saffar-Avval, Majid</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><title>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</title><title>The International journal of heat and fluid flow</title><description>In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Laminar</subject><subject>Mathematical models</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Phases</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Two-phase</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkb1uHCEUhVEUS9nYeQcaK2lmfYHZGaZwEVn-kyylceEOMcxFy4aBDczYSud38BvmScJ6bRcpIlcg7sc5uucQcsxgyYA1J5ul26xRT9bPbrA-Piw5lBnIJQD7QBZMtl3FeSs_kgWwmlctb-8-kc85bwCggbpdkJ_ns8fkdPjz-PR6pdNDrLZrnZGGeSxPRnua3Th7PbkYaLQ06BCfbanXows6URuTwYGaGO7RPGMuUE1HZ1I0ax0C-iNyYLXP-OXlPCS3F-e3Z1fVzY_L67PvN5WpuZwqWRvDaw6Gg2j6lTBNA1xabQaOAxoxDCtdD8JYbKCXEnvgq170VtYd6zsuDsnXvew2xV8z5kmNLhv0XgeMc1ayYasaurYr5Lf_kqxpGeei7aCgp3u0rJNzQqu2yY06_VYM1K4NtVH_tKF2bSiQqrRR_h-_WOlc4rRJB-PymwgXkjEhdtzlnsMS0L3DpLJxGEq0LpVc1RDdOx3_AuZJrXA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Kalteh, Mohammad</creator><creator>Abbassi, Abbas</creator><creator>Saffar-Avval, Majid</creator><creator>Harting, Jens</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</title><author>Kalteh, Mohammad ; Abbassi, Abbas ; Saffar-Avval, Majid ; Harting, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Laminar</topic><topic>Mathematical models</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Phases</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Two-phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalteh, Mohammad</creatorcontrib><creatorcontrib>Abbassi, Abbas</creatorcontrib><creatorcontrib>Saffar-Avval, Majid</creatorcontrib><creatorcontrib>Harting, Jens</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalteh, Mohammad</au><au>Abbassi, Abbas</au><au>Saffar-Avval, Majid</au><au>Harting, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel</atitle><jtitle>The International journal of heat and fluid flow</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>32</volume><issue>1</issue><spage>107</spage><epage>116</epage><pages>107-116</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>In this paper, laminar forced convection heat transfer of a copper–water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2010.08.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-727X
ispartof The International journal of heat and fluid flow, 2011-02, Vol.32 (1), p.107-116
issn 0142-727X
1879-2278
language eng
recordid cdi_proquest_miscellaneous_861540979
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Chemistry
Colloidal state and disperse state
Computer simulation
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid flow
General and physical chemistry
Heat transfer
Laminar
Mathematical models
Microchannel
Microchannels
Nanocomposites
Nanofluid
Nanofluids
Nanomaterials
Nanostructure
Phases
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Two-phase
title Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eulerian%E2%80%93Eulerian%20two-phase%20numerical%20simulation%20of%20nanofluid%20laminar%20forced%20convection%20in%20a%20microchannel&rft.jtitle=The%20International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Kalteh,%20Mohammad&rft.date=2011-02-01&rft.volume=32&rft.issue=1&rft.spage=107&rft.epage=116&rft.pages=107-116&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2010.08.001&rft_dat=%3Cproquest_cross%3E1671223790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-84cc2420c2036b53c66028facd2edec3dd5a4d3cfe60b88eb025b3bf8491b923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671223790&rft_id=info:pmid/&rfr_iscdi=true