Loading…
Comparing the estimates of ROC curves by modeling methods
We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least sq...
Saved in:
Published in: | Cybernetics and systems analysis 2010-11, Vol.46 (6), p.960-966 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23 |
container_end_page | 966 |
container_issue | 6 |
container_start_page | 960 |
container_title | Cybernetics and systems analysis |
container_volume | 46 |
creator | Michalek, Ja Vesely, V. |
description | We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation. |
doi_str_mv | 10.1007/s10559-010-9277-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_861541890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357863535</galeid><sourcerecordid>A357863535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVJocm0D9Cd6SZ04fRKsv6WYUjbQCCQtmshy1cTB9uaSHbI5OmrwYWSQrkL_fAdcdBHyEcKFxRAfckUhDA1UKgNU6p-eUNOqVC81pyrk7IHCTVwI9-Rs5wfAICD0qfEbOO4d6mfdtV8jxXmuR_djLmKobq73VZ-SU_l1B6qMXY4HLkR5_vY5ffkbXBDxg9_1g359fXq5_Z7fXP77Xp7eVN7rthcO0SmO6AmtApbHlirHZMCtOCN900DwjFoWzQKGyeNVyikbJiUHQcRAuMbcr6-u0_xcSkF7dhnj8PgJoxLtlpS0VBtoJCf_iEf4pKmUs5qKrlRDcgCXazQzg1o-ynEOTlfpsOx93HC0Jf7Sy6UllyU2ZDPrwKFmfF53rklZ3v94-41S1fWp5hzwmD3qfxnOlgK9ujJrp5s8WSPnuxLybA1k_dHDZj-tv5_6DeKD5Mz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816397406</pqid></control><display><type>article</type><title>Comparing the estimates of ROC curves by modeling methods</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Michalek, Ja ; Vesely, V.</creator><creatorcontrib>Michalek, Ja ; Vesely, V.</creatorcontrib><description>We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-010-9277-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Control ; Cybernetics ; Estimates ; Estimating techniques ; Least squares method ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Processor Architectures ; Random variables ; Software Engineering/Programming and Operating Systems ; Studies ; Systems analysis ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2010-11, Vol.46 (6), p.960-966</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/816397406?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Michalek, Ja</creatorcontrib><creatorcontrib>Vesely, V.</creatorcontrib><title>Comparing the estimates of ROC curves by modeling methods</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Cybernetics</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Processor Architectures</subject><subject>Random variables</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1q3DAUhUVJocm0D9Cd6SZ04fRKsv6WYUjbQCCQtmshy1cTB9uaSHbI5OmrwYWSQrkL_fAdcdBHyEcKFxRAfckUhDA1UKgNU6p-eUNOqVC81pyrk7IHCTVwI9-Rs5wfAICD0qfEbOO4d6mfdtV8jxXmuR_djLmKobq73VZ-SU_l1B6qMXY4HLkR5_vY5ffkbXBDxg9_1g359fXq5_Z7fXP77Xp7eVN7rthcO0SmO6AmtApbHlirHZMCtOCN900DwjFoWzQKGyeNVyikbJiUHQcRAuMbcr6-u0_xcSkF7dhnj8PgJoxLtlpS0VBtoJCf_iEf4pKmUs5qKrlRDcgCXazQzg1o-ynEOTlfpsOx93HC0Jf7Sy6UllyU2ZDPrwKFmfF53rklZ3v94-41S1fWp5hzwmD3qfxnOlgK9ujJrp5s8WSPnuxLybA1k_dHDZj-tv5_6DeKD5Mz</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Michalek, Ja</creator><creator>Vesely, V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Comparing the estimates of ROC curves by modeling methods</title><author>Michalek, Ja ; Vesely, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Cybernetics</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Processor Architectures</topic><topic>Random variables</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalek, Ja</creatorcontrib><creatorcontrib>Vesely, V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalek, Ja</au><au>Vesely, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the estimates of ROC curves by modeling methods</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>46</volume><issue>6</issue><spage>960</spage><epage>966</epage><pages>960-966</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-010-9277-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2010-11, Vol.46 (6), p.960-966 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_miscellaneous_861541890 |
source | ABI/INFORM Global; Springer Nature |
subjects | Artificial Intelligence Control Cybernetics Estimates Estimating techniques Least squares method Mathematical models Mathematics Mathematics and Statistics Parameter estimation Processor Architectures Random variables Software Engineering/Programming and Operating Systems Studies Systems analysis Systems Theory |
title | Comparing the estimates of ROC curves by modeling methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20estimates%20of%20ROC%20curves%20by%20modeling%20methods&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Michalek,%20Ja&rft.date=2010-11-01&rft.volume=46&rft.issue=6&rft.spage=960&rft.epage=966&rft.pages=960-966&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-010-9277-z&rft_dat=%3Cgale_proqu%3EA357863535%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=816397406&rft_id=info:pmid/&rft_galeid=A357863535&rfr_iscdi=true |