Loading…

Comparing the estimates of ROC curves by modeling methods

We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least sq...

Full description

Saved in:
Bibliographic Details
Published in:Cybernetics and systems analysis 2010-11, Vol.46 (6), p.960-966
Main Authors: Michalek, Ja, Vesely, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23
container_end_page 966
container_issue 6
container_start_page 960
container_title Cybernetics and systems analysis
container_volume 46
creator Michalek, Ja
Vesely, V.
description We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.
doi_str_mv 10.1007/s10559-010-9277-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_861541890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357863535</galeid><sourcerecordid>A357863535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVJocm0D9Cd6SZ04fRKsv6WYUjbQCCQtmshy1cTB9uaSHbI5OmrwYWSQrkL_fAdcdBHyEcKFxRAfckUhDA1UKgNU6p-eUNOqVC81pyrk7IHCTVwI9-Rs5wfAICD0qfEbOO4d6mfdtV8jxXmuR_djLmKobq73VZ-SU_l1B6qMXY4HLkR5_vY5ffkbXBDxg9_1g359fXq5_Z7fXP77Xp7eVN7rthcO0SmO6AmtApbHlirHZMCtOCN900DwjFoWzQKGyeNVyikbJiUHQcRAuMbcr6-u0_xcSkF7dhnj8PgJoxLtlpS0VBtoJCf_iEf4pKmUs5qKrlRDcgCXazQzg1o-ynEOTlfpsOx93HC0Jf7Sy6UllyU2ZDPrwKFmfF53rklZ3v94-41S1fWp5hzwmD3qfxnOlgK9ujJrp5s8WSPnuxLybA1k_dHDZj-tv5_6DeKD5Mz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816397406</pqid></control><display><type>article</type><title>Comparing the estimates of ROC curves by modeling methods</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Michalek, Ja ; Vesely, V.</creator><creatorcontrib>Michalek, Ja ; Vesely, V.</creatorcontrib><description>We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-010-9277-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Control ; Cybernetics ; Estimates ; Estimating techniques ; Least squares method ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Processor Architectures ; Random variables ; Software Engineering/Programming and Operating Systems ; Studies ; Systems analysis ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2010-11, Vol.46 (6), p.960-966</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/816397406?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Michalek, Ja</creatorcontrib><creatorcontrib>Vesely, V.</creatorcontrib><title>Comparing the estimates of ROC curves by modeling methods</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Cybernetics</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Processor Architectures</subject><subject>Random variables</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1q3DAUhUVJocm0D9Cd6SZ04fRKsv6WYUjbQCCQtmshy1cTB9uaSHbI5OmrwYWSQrkL_fAdcdBHyEcKFxRAfckUhDA1UKgNU6p-eUNOqVC81pyrk7IHCTVwI9-Rs5wfAICD0qfEbOO4d6mfdtV8jxXmuR_djLmKobq73VZ-SU_l1B6qMXY4HLkR5_vY5ffkbXBDxg9_1g359fXq5_Z7fXP77Xp7eVN7rthcO0SmO6AmtApbHlirHZMCtOCN900DwjFoWzQKGyeNVyikbJiUHQcRAuMbcr6-u0_xcSkF7dhnj8PgJoxLtlpS0VBtoJCf_iEf4pKmUs5qKrlRDcgCXazQzg1o-ynEOTlfpsOx93HC0Jf7Sy6UllyU2ZDPrwKFmfF53rklZ3v94-41S1fWp5hzwmD3qfxnOlgK9ujJrp5s8WSPnuxLybA1k_dHDZj-tv5_6DeKD5Mz</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Michalek, Ja</creator><creator>Vesely, V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Comparing the estimates of ROC curves by modeling methods</title><author>Michalek, Ja ; Vesely, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Cybernetics</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Processor Architectures</topic><topic>Random variables</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalek, Ja</creatorcontrib><creatorcontrib>Vesely, V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalek, Ja</au><au>Vesely, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the estimates of ROC curves by modeling methods</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>46</volume><issue>6</issue><spage>960</spage><epage>966</epage><pages>960-966</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>We investigate parameter estimation problems using the ROC curve approach. We compare several parametric, semiparametric, and nonparametric estimates of ROC curves on the assumption that the model is binormal. Our comparison is based on the analysis of numerical examples: we use generalized least square method for parametric estimation, functional modeling for semiparametric, and sdf for nonparametric estimation.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10559-010-9277-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2010-11, Vol.46 (6), p.960-966
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_miscellaneous_861541890
source ABI/INFORM Global; Springer Nature
subjects Artificial Intelligence
Control
Cybernetics
Estimates
Estimating techniques
Least squares method
Mathematical models
Mathematics
Mathematics and Statistics
Parameter estimation
Processor Architectures
Random variables
Software Engineering/Programming and Operating Systems
Studies
Systems analysis
Systems Theory
title Comparing the estimates of ROC curves by modeling methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20estimates%20of%20ROC%20curves%20by%20modeling%20methods&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Michalek,%20Ja&rft.date=2010-11-01&rft.volume=46&rft.issue=6&rft.spage=960&rft.epage=966&rft.pages=960-966&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-010-9277-z&rft_dat=%3Cgale_proqu%3EA357863535%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-aee28d019fb7eb3f2b8a26508534cc4405a20bbe97e4a69c7e5664266d305ff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=816397406&rft_id=info:pmid/&rft_galeid=A357863535&rfr_iscdi=true