Loading…
In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric
We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber...
Saved in:
Published in: | IEEE transactions on electron devices 2011-01, Vol.58 (1), p.95-102 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13 |
container_end_page | 102 |
container_issue | 1 |
container_start_page | 95 |
container_title | IEEE transactions on electron devices |
container_volume | 58 |
creator | XINKE LIU CHIN, Hock-Chun TAN, Leng-Seow YEO, Yee-Chia |
description | We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively. |
doi_str_mv | 10.1109/TED.2010.2084410 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861543426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5621891</ieee_id><sourcerecordid>861543426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</originalsourceid><addsrcrecordid>eNpdkc9LXDEQx4O00O3ae8FLQEpPT_Pr5SVH2bUqaBVqe31ksxMdeT-2SZ7gyX_dLLt48BDCMJ_5MMyXkO-cnXDO7On9-fJEsFIJZpTi7IDMeF03ldVKfyIzxriprDTyC_ma0lMptVJiRl6vBpowT_TPFIPzQO9cSvjsMo4DHQO9cF2HU09_Y464BhrGSG8gu666jQ9uQE8Xj9Cjdx395zaluYTNWIT78Ut8eKzuIPaYMz5jfinCDHSJ0IEvRn9IPgfXJfi2_-fk76_z-8VldX17cbU4u668VDZXa9twJo0A6blu6gZEaIReKaPK864JYS3t2htRi5USlq1qY4X1suFCSxO4nJOfO-8mjv8nSLntMXnoOjfAOKXWaF4rqQo9J8cfyKdxikNZri0rMG6Nqrc-tqN8HFOKENpNxN7FlwK120DaEki7DaTdB1JGfuzFLpV7hegGj-l9TshGaSNF4Y52HALAe7vWghvL5RsD6ZLR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030198451</pqid></control><display><type>article</type><title>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</title><source>IEEE Electronic Library (IEL) Journals</source><creator>XINKE LIU ; CHIN, Hock-Chun ; TAN, Leng-Seow ; YEO, Yee-Chia</creator><creatorcontrib>XINKE LIU ; CHIN, Hock-Chun ; TAN, Leng-Seow ; YEO, Yee-Chia</creatorcontrib><description>We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2010.2084410</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Density ; Dielectric, amorphous and glass solid devices ; Dielectrics ; Electronics ; Exact sciences and technology ; Frequency measurement ; Gallium nitride ; Gallium nitride (GaN) ; Gallium nitrides ; Gates ; in situ surface passivation ; interface state density ; Logic gates ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Nitrides ; Passivation ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silanes ; Temperature measurement</subject><ispartof>IEEE transactions on electron devices, 2011-01, Vol.58 (1), p.95-102</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</citedby><cites>FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5621891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23746832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>XINKE LIU</creatorcontrib><creatorcontrib>CHIN, Hock-Chun</creatorcontrib><creatorcontrib>TAN, Leng-Seow</creatorcontrib><creatorcontrib>YEO, Yee-Chia</creatorcontrib><title>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Dielectrics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency measurement</subject><subject>Gallium nitride</subject><subject>Gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Gates</subject><subject>in situ surface passivation</subject><subject>interface state density</subject><subject>Logic gates</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nitrides</subject><subject>Passivation</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silanes</subject><subject>Temperature measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LXDEQx4O00O3ae8FLQEpPT_Pr5SVH2bUqaBVqe31ksxMdeT-2SZ7gyX_dLLt48BDCMJ_5MMyXkO-cnXDO7On9-fJEsFIJZpTi7IDMeF03ldVKfyIzxriprDTyC_ma0lMptVJiRl6vBpowT_TPFIPzQO9cSvjsMo4DHQO9cF2HU09_Y464BhrGSG8gu666jQ9uQE8Xj9Cjdx395zaluYTNWIT78Ut8eKzuIPaYMz5jfinCDHSJ0IEvRn9IPgfXJfi2_-fk76_z-8VldX17cbU4u668VDZXa9twJo0A6blu6gZEaIReKaPK864JYS3t2htRi5USlq1qY4X1suFCSxO4nJOfO-8mjv8nSLntMXnoOjfAOKXWaF4rqQo9J8cfyKdxikNZri0rMG6Nqrc-tqN8HFOKENpNxN7FlwK120DaEki7DaTdB1JGfuzFLpV7hegGj-l9TshGaSNF4Y52HALAe7vWghvL5RsD6ZLR</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>XINKE LIU</creator><creator>CHIN, Hock-Chun</creator><creator>TAN, Leng-Seow</creator><creator>YEO, Yee-Chia</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201101</creationdate><title>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</title><author>XINKE LIU ; CHIN, Hock-Chun ; TAN, Leng-Seow ; YEO, Yee-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Dielectrics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency measurement</topic><topic>Gallium nitride</topic><topic>Gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Gates</topic><topic>in situ surface passivation</topic><topic>interface state density</topic><topic>Logic gates</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nitrides</topic><topic>Passivation</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silanes</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XINKE LIU</creatorcontrib><creatorcontrib>CHIN, Hock-Chun</creatorcontrib><creatorcontrib>TAN, Leng-Seow</creatorcontrib><creatorcontrib>YEO, Yee-Chia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XINKE LIU</au><au>CHIN, Hock-Chun</au><au>TAN, Leng-Seow</au><au>YEO, Yee-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-01</date><risdate>2011</risdate><volume>58</volume><issue>1</issue><spage>95</spage><epage>102</epage><pages>95-102</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2010.2084410</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2011-01, Vol.58 (1), p.95-102 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_861543426 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Capacitance Chemical vapor deposition Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Density Dielectric, amorphous and glass solid devices Dielectrics Electronics Exact sciences and technology Frequency measurement Gallium nitride Gallium nitride (GaN) Gallium nitrides Gates in situ surface passivation interface state density Logic gates Materials science Methods of deposition of films and coatings film growth and epitaxy Microelectronic fabrication (materials and surfaces technology) Nitrides Passivation Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silanes Temperature measurement |
title | In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20Surface%20Passivation%20of%20Gallium%20Nitride%20for%20Metal-Organic%20Chemical%20Vapor%20Deposition%20of%20High-Permittivity%20Gate%20Dielectric&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=XINKE%20LIU&rft.date=2011-01&rft.volume=58&rft.issue=1&rft.spage=95&rft.epage=102&rft.pages=95-102&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2010.2084410&rft_dat=%3Cproquest_cross%3E861543426%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030198451&rft_id=info:pmid/&rft_ieee_id=5621891&rfr_iscdi=true |