Loading…

In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric

We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2011-01, Vol.58 (1), p.95-102
Main Authors: XINKE LIU, CHIN, Hock-Chun, TAN, Leng-Seow, YEO, Yee-Chia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13
cites cdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13
container_end_page 102
container_issue 1
container_start_page 95
container_title IEEE transactions on electron devices
container_volume 58
creator XINKE LIU
CHIN, Hock-Chun
TAN, Leng-Seow
YEO, Yee-Chia
description We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.
doi_str_mv 10.1109/TED.2010.2084410
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861543426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5621891</ieee_id><sourcerecordid>861543426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</originalsourceid><addsrcrecordid>eNpdkc9LXDEQx4O00O3ae8FLQEpPT_Pr5SVH2bUqaBVqe31ksxMdeT-2SZ7gyX_dLLt48BDCMJ_5MMyXkO-cnXDO7On9-fJEsFIJZpTi7IDMeF03ldVKfyIzxriprDTyC_ma0lMptVJiRl6vBpowT_TPFIPzQO9cSvjsMo4DHQO9cF2HU09_Y464BhrGSG8gu666jQ9uQE8Xj9Cjdx395zaluYTNWIT78Ut8eKzuIPaYMz5jfinCDHSJ0IEvRn9IPgfXJfi2_-fk76_z-8VldX17cbU4u668VDZXa9twJo0A6blu6gZEaIReKaPK864JYS3t2htRi5USlq1qY4X1suFCSxO4nJOfO-8mjv8nSLntMXnoOjfAOKXWaF4rqQo9J8cfyKdxikNZri0rMG6Nqrc-tqN8HFOKENpNxN7FlwK120DaEki7DaTdB1JGfuzFLpV7hegGj-l9TshGaSNF4Y52HALAe7vWghvL5RsD6ZLR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030198451</pqid></control><display><type>article</type><title>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</title><source>IEEE Electronic Library (IEL) Journals</source><creator>XINKE LIU ; CHIN, Hock-Chun ; TAN, Leng-Seow ; YEO, Yee-Chia</creator><creatorcontrib>XINKE LIU ; CHIN, Hock-Chun ; TAN, Leng-Seow ; YEO, Yee-Chia</creatorcontrib><description>We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2010.2084410</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance ; Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Density ; Dielectric, amorphous and glass solid devices ; Dielectrics ; Electronics ; Exact sciences and technology ; Frequency measurement ; Gallium nitride ; Gallium nitride (GaN) ; Gallium nitrides ; Gates ; in situ surface passivation ; interface state density ; Logic gates ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Nitrides ; Passivation ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silanes ; Temperature measurement</subject><ispartof>IEEE transactions on electron devices, 2011-01, Vol.58 (1), p.95-102</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</citedby><cites>FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5621891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23746832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>XINKE LIU</creatorcontrib><creatorcontrib>CHIN, Hock-Chun</creatorcontrib><creatorcontrib>TAN, Leng-Seow</creatorcontrib><creatorcontrib>YEO, Yee-Chia</creatorcontrib><title>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Dielectrics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Frequency measurement</subject><subject>Gallium nitride</subject><subject>Gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>Gates</subject><subject>in situ surface passivation</subject><subject>interface state density</subject><subject>Logic gates</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nitrides</subject><subject>Passivation</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silanes</subject><subject>Temperature measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LXDEQx4O00O3ae8FLQEpPT_Pr5SVH2bUqaBVqe31ksxMdeT-2SZ7gyX_dLLt48BDCMJ_5MMyXkO-cnXDO7On9-fJEsFIJZpTi7IDMeF03ldVKfyIzxriprDTyC_ma0lMptVJiRl6vBpowT_TPFIPzQO9cSvjsMo4DHQO9cF2HU09_Y464BhrGSG8gu666jQ9uQE8Xj9Cjdx395zaluYTNWIT78Ut8eKzuIPaYMz5jfinCDHSJ0IEvRn9IPgfXJfi2_-fk76_z-8VldX17cbU4u668VDZXa9twJo0A6blu6gZEaIReKaPK864JYS3t2htRi5USlq1qY4X1suFCSxO4nJOfO-8mjv8nSLntMXnoOjfAOKXWaF4rqQo9J8cfyKdxikNZri0rMG6Nqrc-tqN8HFOKENpNxN7FlwK120DaEki7DaTdB1JGfuzFLpV7hegGj-l9TshGaSNF4Y52HALAe7vWghvL5RsD6ZLR</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>XINKE LIU</creator><creator>CHIN, Hock-Chun</creator><creator>TAN, Leng-Seow</creator><creator>YEO, Yee-Chia</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201101</creationdate><title>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</title><author>XINKE LIU ; CHIN, Hock-Chun ; TAN, Leng-Seow ; YEO, Yee-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Dielectrics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Frequency measurement</topic><topic>Gallium nitride</topic><topic>Gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>Gates</topic><topic>in situ surface passivation</topic><topic>interface state density</topic><topic>Logic gates</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nitrides</topic><topic>Passivation</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silanes</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XINKE LIU</creatorcontrib><creatorcontrib>CHIN, Hock-Chun</creatorcontrib><creatorcontrib>TAN, Leng-Seow</creatorcontrib><creatorcontrib>YEO, Yee-Chia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XINKE LIU</au><au>CHIN, Hock-Chun</au><au>TAN, Leng-Seow</au><au>YEO, Yee-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-01</date><risdate>2011</risdate><volume>58</volume><issue>1</issue><spage>95</spage><epage>102</epage><pages>95-102</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We report the demonstration of novel techniques for surface passivation of gallium nitride (GaN), comprising the steps of in situ vacuum anneal (VA) and silane-ammonia (SiH 4 + NH 3 ) or silane (SiH 4 ) treatment for GaN, prior to the formation of high-permittivity gate dielectric in a multichamber metal-organic chemical vapor deposition tool. The effects of VA temperature and the SiH 4 + NH 3 or SiH 4 treatment temperature on interface quality was investigated. High-temperature capacitance-voltage characterization was also performed to probe the interface states near the midgap of GaN. Interface state density D it as a function of energy was extracted. Without in situ passivation, a control TaN/HfAlO/GaN capacitor has a midgap D it of ~2.0 × 10 12 cm -2 · eV -1 . This is reduced to ~4.0 × 10 11 cm -2 · eV -1 and ~2.0 × 10 10 cm -2 · eV -1 for samples that received the in situ SiH 4 + NH 3 treatment and in situ SiH 4 treatment, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2010.2084410</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-01, Vol.58 (1), p.95-102
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_861543426
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Capacitance
Chemical vapor deposition
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
Density
Dielectric, amorphous and glass solid devices
Dielectrics
Electronics
Exact sciences and technology
Frequency measurement
Gallium nitride
Gallium nitride (GaN)
Gallium nitrides
Gates
in situ surface passivation
interface state density
Logic gates
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microelectronic fabrication (materials and surfaces technology)
Nitrides
Passivation
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silanes
Temperature measurement
title In situ Surface Passivation of Gallium Nitride for Metal-Organic Chemical Vapor Deposition of High-Permittivity Gate Dielectric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20Surface%20Passivation%20of%20Gallium%20Nitride%20for%20Metal-Organic%20Chemical%20Vapor%20Deposition%20of%20High-Permittivity%20Gate%20Dielectric&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=XINKE%20LIU&rft.date=2011-01&rft.volume=58&rft.issue=1&rft.spage=95&rft.epage=102&rft.pages=95-102&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2010.2084410&rft_dat=%3Cproquest_cross%3E861543426%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-d9710382e3c16757e2f726b484b48ca7ffd39dc8252b4290b58929c3712638f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030198451&rft_id=info:pmid/&rft_ieee_id=5621891&rfr_iscdi=true