Loading…

A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest

Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2011-02, Vol.26 (1), p.181-189
Main Authors: Ramos, C C O, de Sousa, A N, Papa, J P, Falcão, Alexandre Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643
cites cdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643
container_end_page 189
container_issue 1
container_start_page 181
container_title IEEE transactions on power systems
container_volume 26
creator Ramos, C C O
de Sousa, A N
Papa, J P
Falcão, Alexandre Xavier
description Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.
doi_str_mv 10.1109/TPWRS.2010.2051823
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861543513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5530391</ieee_id><sourcerecordid>861543513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7Cx2LBKGdux6yxLoYBU2gqKWFp5TNRUeWEnQvw9Lq1YsPJ45tx5XEIuGYwYg-h2vfp4fRtx8H8OkmkujsiASakDUOPomAxAaxnoSMIpOXNuCwDKFwbkZUIX-EUnbWubON3QvLF00dQdppu6SOOSzhvn0NF79KmuaGp6FzvMqA-WbVdUfRWs4m5DZ41F152TkzwuHV4c3iF5nz2sp0_BfPn4PJ3Mg1Rw1QUoMzUOMyFB51nGFZcRT8M8QS08MNYJJshEGCoNOYoIIOSSZUxgConOVSiG5Gbf12_92fvBpipcimUZ19j0zmjFZCgkE568_kdum97WfjmjQxWJiEvuIb6HUuuvtZib1hZVbL8NA7Pz1_z6a3b-moO_XnS1FxWI-CeQUoCImPgB4gl1Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846939252</pqid></control><display><type>article</type><title>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ramos, C C O ; de Sousa, A N ; Papa, J P ; Falcão, Alexandre Xavier</creator><creatorcontrib>Ramos, C C O ; de Sousa, A N ; Papa, J P ; Falcão, Alexandre Xavier</creatorcontrib><description>Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2010.2051823</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Commercialization ; Costs ; Electric power generation ; Energy loss ; Energy measurement ; Expert systems ; Face detection ; Forests ; Industrial training ; Investments ; Loss measurement ; Neural networks ; Nontechnical losses ; optimum-path forest ; Pattern recognition ; Pruning ; State of the art</subject><ispartof>IEEE transactions on power systems, 2011-02, Vol.26 (1), p.181-189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</citedby><cites>FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5530391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ramos, C C O</creatorcontrib><creatorcontrib>de Sousa, A N</creatorcontrib><creatorcontrib>Papa, J P</creatorcontrib><creatorcontrib>Falcão, Alexandre Xavier</creatorcontrib><title>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Commercialization</subject><subject>Costs</subject><subject>Electric power generation</subject><subject>Energy loss</subject><subject>Energy measurement</subject><subject>Expert systems</subject><subject>Face detection</subject><subject>Forests</subject><subject>Industrial training</subject><subject>Investments</subject><subject>Loss measurement</subject><subject>Neural networks</subject><subject>Nontechnical losses</subject><subject>optimum-path forest</subject><subject>Pattern recognition</subject><subject>Pruning</subject><subject>State of the art</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EEqXwA7Cx2LBKGdux6yxLoYBU2gqKWFp5TNRUeWEnQvw9Lq1YsPJ45tx5XEIuGYwYg-h2vfp4fRtx8H8OkmkujsiASakDUOPomAxAaxnoSMIpOXNuCwDKFwbkZUIX-EUnbWubON3QvLF00dQdppu6SOOSzhvn0NF79KmuaGp6FzvMqA-WbVdUfRWs4m5DZ41F152TkzwuHV4c3iF5nz2sp0_BfPn4PJ3Mg1Rw1QUoMzUOMyFB51nGFZcRT8M8QS08MNYJJshEGCoNOYoIIOSSZUxgConOVSiG5Gbf12_92fvBpipcimUZ19j0zmjFZCgkE568_kdum97WfjmjQxWJiEvuIb6HUuuvtZib1hZVbL8NA7Pz1_z6a3b-moO_XnS1FxWI-CeQUoCImPgB4gl1Qw</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Ramos, C C O</creator><creator>de Sousa, A N</creator><creator>Papa, J P</creator><creator>Falcão, Alexandre Xavier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201102</creationdate><title>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</title><author>Ramos, C C O ; de Sousa, A N ; Papa, J P ; Falcão, Alexandre Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Commercialization</topic><topic>Costs</topic><topic>Electric power generation</topic><topic>Energy loss</topic><topic>Energy measurement</topic><topic>Expert systems</topic><topic>Face detection</topic><topic>Forests</topic><topic>Industrial training</topic><topic>Investments</topic><topic>Loss measurement</topic><topic>Neural networks</topic><topic>Nontechnical losses</topic><topic>optimum-path forest</topic><topic>Pattern recognition</topic><topic>Pruning</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, C C O</creatorcontrib><creatorcontrib>de Sousa, A N</creatorcontrib><creatorcontrib>Papa, J P</creatorcontrib><creatorcontrib>Falcão, Alexandre Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, C C O</au><au>de Sousa, A N</au><au>Papa, J P</au><au>Falcão, Alexandre Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-02</date><risdate>2011</risdate><volume>26</volume><issue>1</issue><spage>181</spage><epage>189</epage><pages>181-189</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2010.2051823</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2011-02, Vol.26 (1), p.181-189
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_861543513
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial intelligence
Commercialization
Costs
Electric power generation
Energy loss
Energy measurement
Expert systems
Face detection
Forests
Industrial training
Investments
Loss measurement
Neural networks
Nontechnical losses
optimum-path forest
Pattern recognition
Pruning
State of the art
title A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20for%20Nontechnical%20Losses%20Detection%20Based%20on%20Optimum-Path%20Forest&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ramos,%20C%20C%20O&rft.date=2011-02&rft.volume=26&rft.issue=1&rft.spage=181&rft.epage=189&rft.pages=181-189&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2010.2051823&rft_dat=%3Cproquest_cross%3E861543513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=846939252&rft_id=info:pmid/&rft_ieee_id=5530391&rfr_iscdi=true