Loading…
A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest
Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although...
Saved in:
Published in: | IEEE transactions on power systems 2011-02, Vol.26 (1), p.181-189 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643 |
container_end_page | 189 |
container_issue | 1 |
container_start_page | 181 |
container_title | IEEE transactions on power systems |
container_volume | 26 |
creator | Ramos, C C O de Sousa, A N Papa, J P Falcão, Alexandre Xavier |
description | Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification. |
doi_str_mv | 10.1109/TPWRS.2010.2051823 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861543513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5530391</ieee_id><sourcerecordid>861543513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqXwA7Cx2LBKGdux6yxLoYBU2gqKWFp5TNRUeWEnQvw9Lq1YsPJ45tx5XEIuGYwYg-h2vfp4fRtx8H8OkmkujsiASakDUOPomAxAaxnoSMIpOXNuCwDKFwbkZUIX-EUnbWubON3QvLF00dQdppu6SOOSzhvn0NF79KmuaGp6FzvMqA-WbVdUfRWs4m5DZ41F152TkzwuHV4c3iF5nz2sp0_BfPn4PJ3Mg1Rw1QUoMzUOMyFB51nGFZcRT8M8QS08MNYJJshEGCoNOYoIIOSSZUxgConOVSiG5Gbf12_92fvBpipcimUZ19j0zmjFZCgkE568_kdum97WfjmjQxWJiEvuIb6HUuuvtZib1hZVbL8NA7Pz1_z6a3b-moO_XnS1FxWI-CeQUoCImPgB4gl1Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846939252</pqid></control><display><type>article</type><title>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ramos, C C O ; de Sousa, A N ; Papa, J P ; Falcão, Alexandre Xavier</creator><creatorcontrib>Ramos, C C O ; de Sousa, A N ; Papa, J P ; Falcão, Alexandre Xavier</creatorcontrib><description>Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2010.2051823</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Commercialization ; Costs ; Electric power generation ; Energy loss ; Energy measurement ; Expert systems ; Face detection ; Forests ; Industrial training ; Investments ; Loss measurement ; Neural networks ; Nontechnical losses ; optimum-path forest ; Pattern recognition ; Pruning ; State of the art</subject><ispartof>IEEE transactions on power systems, 2011-02, Vol.26 (1), p.181-189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</citedby><cites>FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5530391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ramos, C C O</creatorcontrib><creatorcontrib>de Sousa, A N</creatorcontrib><creatorcontrib>Papa, J P</creatorcontrib><creatorcontrib>Falcão, Alexandre Xavier</creatorcontrib><title>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Commercialization</subject><subject>Costs</subject><subject>Electric power generation</subject><subject>Energy loss</subject><subject>Energy measurement</subject><subject>Expert systems</subject><subject>Face detection</subject><subject>Forests</subject><subject>Industrial training</subject><subject>Investments</subject><subject>Loss measurement</subject><subject>Neural networks</subject><subject>Nontechnical losses</subject><subject>optimum-path forest</subject><subject>Pattern recognition</subject><subject>Pruning</subject><subject>State of the art</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EEqXwA7Cx2LBKGdux6yxLoYBU2gqKWFp5TNRUeWEnQvw9Lq1YsPJ45tx5XEIuGYwYg-h2vfp4fRtx8H8OkmkujsiASakDUOPomAxAaxnoSMIpOXNuCwDKFwbkZUIX-EUnbWubON3QvLF00dQdppu6SOOSzhvn0NF79KmuaGp6FzvMqA-WbVdUfRWs4m5DZ41F152TkzwuHV4c3iF5nz2sp0_BfPn4PJ3Mg1Rw1QUoMzUOMyFB51nGFZcRT8M8QS08MNYJJshEGCoNOYoIIOSSZUxgConOVSiG5Gbf12_92fvBpipcimUZ19j0zmjFZCgkE568_kdum97WfjmjQxWJiEvuIb6HUuuvtZib1hZVbL8NA7Pz1_z6a3b-moO_XnS1FxWI-CeQUoCImPgB4gl1Qw</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Ramos, C C O</creator><creator>de Sousa, A N</creator><creator>Papa, J P</creator><creator>Falcão, Alexandre Xavier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201102</creationdate><title>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</title><author>Ramos, C C O ; de Sousa, A N ; Papa, J P ; Falcão, Alexandre Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Commercialization</topic><topic>Costs</topic><topic>Electric power generation</topic><topic>Energy loss</topic><topic>Energy measurement</topic><topic>Expert systems</topic><topic>Face detection</topic><topic>Forests</topic><topic>Industrial training</topic><topic>Investments</topic><topic>Loss measurement</topic><topic>Neural networks</topic><topic>Nontechnical losses</topic><topic>optimum-path forest</topic><topic>Pattern recognition</topic><topic>Pruning</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, C C O</creatorcontrib><creatorcontrib>de Sousa, A N</creatorcontrib><creatorcontrib>Papa, J P</creatorcontrib><creatorcontrib>Falcão, Alexandre Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, C C O</au><au>de Sousa, A N</au><au>Papa, J P</au><au>Falcão, Alexandre Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2011-02</date><risdate>2011</risdate><volume>26</volume><issue>1</issue><spage>181</spage><epage>189</epage><pages>181-189</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2010.2051823</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2011-02, Vol.26 (1), p.181-189 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_miscellaneous_861543513 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Artificial intelligence Commercialization Costs Electric power generation Energy loss Energy measurement Expert systems Face detection Forests Industrial training Investments Loss measurement Neural networks Nontechnical losses optimum-path forest Pattern recognition Pruning State of the art |
title | A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20for%20Nontechnical%20Losses%20Detection%20Based%20on%20Optimum-Path%20Forest&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Ramos,%20C%20C%20O&rft.date=2011-02&rft.volume=26&rft.issue=1&rft.spage=181&rft.epage=189&rft.pages=181-189&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2010.2051823&rft_dat=%3Cproquest_cross%3E861543513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-e5d674d3508fdd262592c4fbe83c3278bebe1344680fe39004251d13ec0b8f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=846939252&rft_id=info:pmid/&rft_ieee_id=5530391&rfr_iscdi=true |