Loading…

Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images

A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quant...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems 2011-02, Vol.35 (1), p.39-48
Main Authors: Sim, K. S., Lai, M. A., Tso, C. P., Teo, C. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3
cites cdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3
container_end_page 48
container_issue 1
container_start_page 39
container_title Journal of medical systems
container_volume 35
creator Sim, K. S.
Lai, M. A.
Tso, C. P.
Teo, C. C.
description A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.
doi_str_mv 10.1007/s10916-009-9339-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861565624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848321693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</originalsourceid><addsrcrecordid>eNqFkU9LxDAQxYMo7rr6AbxI8eIpOmmaf0eRVRdXhV0FbyVt0tKlbdamPfjtzbKrgiBeZgbymzfhPYROCVwSAHHlCSjCMYDCitJQ9tCYMEExl-ptH42BJBIzpuQIHXm_ggByLg7RKAYBlEkxRg_Lqi1rG80aXdpoWZWtrnHv8JOrvI0Wuq9cNPV91WymNipcFz3qsrV9lUcL612r23y37Y_RQaFrb092fYJeb6cvN_d4_nw3u7me4zyBuMdMmiSJCU-MlIICN5oqUhTWamHACGAyZok2SglGOUCWKSONzDMZ5yajuaYTdLHVXXfufbC-T5vK57audWvd4FPJCeOMx8n_ZCJp-Ekwb4LOf5ErN3TBjA0kODBgLEBkC-Wd876zRbrugjPdR0og3SSSbhNJg9HpJpFQJuhsJzxkjTXfG18RBCDeAj48taXtfi7_rfoJxXyUiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847605055</pqid></control><display><type>article</type><title>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</title><source>Springer Link</source><creator>Sim, K. S. ; Lai, M. A. ; Tso, C. P. ; Teo, C. C.</creator><creatorcontrib>Sim, K. S. ; Lai, M. A. ; Tso, C. P. ; Teo, C. C.</creatorcontrib><description>A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-009-9339-9</identifier><identifier>PMID: 20703587</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Amplitudes ; Autocorrelation functions ; Estimating ; Health Informatics ; Health Sciences ; Humans ; Image processing systems ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Medical ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Models, Statistical ; NMR ; Nuclear magnetic resonance ; Original Paper ; Phantoms, Imaging ; Signal Processing, Computer-Assisted ; Signal to noise ratio ; Statistics for Life Sciences</subject><ispartof>Journal of medical systems, 2011-02, Vol.35 (1), p.39-48</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</citedby><cites>FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20703587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sim, K. S.</creatorcontrib><creatorcontrib>Lai, M. A.</creatorcontrib><creatorcontrib>Tso, C. P.</creatorcontrib><creatorcontrib>Teo, C. C.</creatorcontrib><title>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.</description><subject>Amplitudes</subject><subject>Autocorrelation functions</subject><subject>Estimating</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Image processing systems</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Medical</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Statistical</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Original Paper</subject><subject>Phantoms, Imaging</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal to noise ratio</subject><subject>Statistics for Life Sciences</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LxDAQxYMo7rr6AbxI8eIpOmmaf0eRVRdXhV0FbyVt0tKlbdamPfjtzbKrgiBeZgbymzfhPYROCVwSAHHlCSjCMYDCitJQ9tCYMEExl-ptH42BJBIzpuQIHXm_ggByLg7RKAYBlEkxRg_Lqi1rG80aXdpoWZWtrnHv8JOrvI0Wuq9cNPV91WymNipcFz3qsrV9lUcL612r23y37Y_RQaFrb092fYJeb6cvN_d4_nw3u7me4zyBuMdMmiSJCU-MlIICN5oqUhTWamHACGAyZok2SglGOUCWKSONzDMZ5yajuaYTdLHVXXfufbC-T5vK57audWvd4FPJCeOMx8n_ZCJp-Ekwb4LOf5ErN3TBjA0kODBgLEBkC-Wd876zRbrugjPdR0og3SSSbhNJg9HpJpFQJuhsJzxkjTXfG18RBCDeAj48taXtfi7_rfoJxXyUiw</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Sim, K. S.</creator><creator>Lai, M. A.</creator><creator>Tso, C. P.</creator><creator>Teo, C. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</title><author>Sim, K. S. ; Lai, M. A. ; Tso, C. P. ; Teo, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitudes</topic><topic>Autocorrelation functions</topic><topic>Estimating</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Image processing systems</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Medical</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Statistical</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Original Paper</topic><topic>Phantoms, Imaging</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal to noise ratio</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sim, K. S.</creatorcontrib><creatorcontrib>Lai, M. A.</creatorcontrib><creatorcontrib>Tso, C. P.</creatorcontrib><creatorcontrib>Teo, C. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sim, K. S.</au><au>Lai, M. A.</au><au>Tso, C. P.</au><au>Teo, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>35</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>20703587</pmid><doi>10.1007/s10916-009-9339-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-5598
ispartof Journal of medical systems, 2011-02, Vol.35 (1), p.39-48
issn 0148-5598
1573-689X
language eng
recordid cdi_proquest_miscellaneous_861565624
source Springer Link
subjects Amplitudes
Autocorrelation functions
Estimating
Health Informatics
Health Sciences
Humans
Image processing systems
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Medical
Medical imaging
Medicine
Medicine & Public Health
Models, Statistical
NMR
Nuclear magnetic resonance
Original Paper
Phantoms, Imaging
Signal Processing, Computer-Assisted
Signal to noise ratio
Statistics for Life Sciences
title Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Image%20Signal-to-Noise%20Ratio%20Estimation%20for%20Magnetic%20Resonance%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Sim,%20K.%20S.&rft.date=2011-02-01&rft.volume=35&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-009-9339-9&rft_dat=%3Cproquest_cross%3E848321693%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=847605055&rft_id=info:pmid/20703587&rfr_iscdi=true