Loading…
Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images
A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quant...
Saved in:
Published in: | Journal of medical systems 2011-02, Vol.35 (1), p.39-48 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 39 |
container_title | Journal of medical systems |
container_volume | 35 |
creator | Sim, K. S. Lai, M. A. Tso, C. P. Teo, C. C. |
description | A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system. |
doi_str_mv | 10.1007/s10916-009-9339-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_861565624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848321693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</originalsourceid><addsrcrecordid>eNqFkU9LxDAQxYMo7rr6AbxI8eIpOmmaf0eRVRdXhV0FbyVt0tKlbdamPfjtzbKrgiBeZgbymzfhPYROCVwSAHHlCSjCMYDCitJQ9tCYMEExl-ptH42BJBIzpuQIHXm_ggByLg7RKAYBlEkxRg_Lqi1rG80aXdpoWZWtrnHv8JOrvI0Wuq9cNPV91WymNipcFz3qsrV9lUcL612r23y37Y_RQaFrb092fYJeb6cvN_d4_nw3u7me4zyBuMdMmiSJCU-MlIICN5oqUhTWamHACGAyZok2SglGOUCWKSONzDMZ5yajuaYTdLHVXXfufbC-T5vK57audWvd4FPJCeOMx8n_ZCJp-Ekwb4LOf5ErN3TBjA0kODBgLEBkC-Wd876zRbrugjPdR0og3SSSbhNJg9HpJpFQJuhsJzxkjTXfG18RBCDeAj48taXtfi7_rfoJxXyUiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847605055</pqid></control><display><type>article</type><title>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</title><source>Springer Link</source><creator>Sim, K. S. ; Lai, M. A. ; Tso, C. P. ; Teo, C. C.</creator><creatorcontrib>Sim, K. S. ; Lai, M. A. ; Tso, C. P. ; Teo, C. C.</creatorcontrib><description>A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-009-9339-9</identifier><identifier>PMID: 20703587</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Amplitudes ; Autocorrelation functions ; Estimating ; Health Informatics ; Health Sciences ; Humans ; Image processing systems ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics & numerical data ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics & numerical data ; Medical ; Medical imaging ; Medicine ; Medicine & Public Health ; Models, Statistical ; NMR ; Nuclear magnetic resonance ; Original Paper ; Phantoms, Imaging ; Signal Processing, Computer-Assisted ; Signal to noise ratio ; Statistics for Life Sciences</subject><ispartof>Journal of medical systems, 2011-02, Vol.35 (1), p.39-48</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</citedby><cites>FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20703587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sim, K. S.</creatorcontrib><creatorcontrib>Lai, M. A.</creatorcontrib><creatorcontrib>Tso, C. P.</creatorcontrib><creatorcontrib>Teo, C. C.</creatorcontrib><title>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.</description><subject>Amplitudes</subject><subject>Autocorrelation functions</subject><subject>Estimating</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Image processing systems</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Medical</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Models, Statistical</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Original Paper</subject><subject>Phantoms, Imaging</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal to noise ratio</subject><subject>Statistics for Life Sciences</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LxDAQxYMo7rr6AbxI8eIpOmmaf0eRVRdXhV0FbyVt0tKlbdamPfjtzbKrgiBeZgbymzfhPYROCVwSAHHlCSjCMYDCitJQ9tCYMEExl-ptH42BJBIzpuQIHXm_ggByLg7RKAYBlEkxRg_Lqi1rG80aXdpoWZWtrnHv8JOrvI0Wuq9cNPV91WymNipcFz3qsrV9lUcL612r23y37Y_RQaFrb092fYJeb6cvN_d4_nw3u7me4zyBuMdMmiSJCU-MlIICN5oqUhTWamHACGAyZok2SglGOUCWKSONzDMZ5yajuaYTdLHVXXfufbC-T5vK57audWvd4FPJCeOMx8n_ZCJp-Ekwb4LOf5ErN3TBjA0kODBgLEBkC-Wd876zRbrugjPdR0og3SSSbhNJg9HpJpFQJuhsJzxkjTXfG18RBCDeAj48taXtfi7_rfoJxXyUiw</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Sim, K. S.</creator><creator>Lai, M. A.</creator><creator>Tso, C. P.</creator><creator>Teo, C. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</title><author>Sim, K. S. ; Lai, M. A. ; Tso, C. P. ; Teo, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amplitudes</topic><topic>Autocorrelation functions</topic><topic>Estimating</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Image processing systems</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Medical</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Models, Statistical</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Original Paper</topic><topic>Phantoms, Imaging</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal to noise ratio</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sim, K. S.</creatorcontrib><creatorcontrib>Lai, M. A.</creatorcontrib><creatorcontrib>Tso, C. P.</creatorcontrib><creatorcontrib>Teo, C. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sim, K. S.</au><au>Lai, M. A.</au><au>Tso, C. P.</au><au>Teo, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>35</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>20703587</pmid><doi>10.1007/s10916-009-9339-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2011-02, Vol.35 (1), p.39-48 |
issn | 0148-5598 1573-689X |
language | eng |
recordid | cdi_proquest_miscellaneous_861565624 |
source | Springer Link |
subjects | Amplitudes Autocorrelation functions Estimating Health Informatics Health Sciences Humans Image processing systems Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - statistics & numerical data Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Medical Medical imaging Medicine Medicine & Public Health Models, Statistical NMR Nuclear magnetic resonance Original Paper Phantoms, Imaging Signal Processing, Computer-Assisted Signal to noise ratio Statistics for Life Sciences |
title | Single Image Signal-to-Noise Ratio Estimation for Magnetic Resonance Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Image%20Signal-to-Noise%20Ratio%20Estimation%20for%20Magnetic%20Resonance%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Sim,%20K.%20S.&rft.date=2011-02-01&rft.volume=35&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-009-9339-9&rft_dat=%3Cproquest_cross%3E848321693%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-58d442164d887306da391ffeea7d0d7058254ad99753600bb9d8d8cb82cdb3ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=847605055&rft_id=info:pmid/20703587&rfr_iscdi=true |