Loading…
Spark protection layers for CMOS pixel anode chips in MPGDs
In this work we have investigated the functioning of high resistivity amorphous silicon and silicon-rich nitride layers as a protection against discharges in Micro-Patterned Gaseous Detectors (MPGDs). When the anode is protected by a high resistivity layer, discharge signals are limited in charge. A...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2011-02, Vol.629 (1), p.66-73 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we have investigated the functioning of high resistivity amorphous silicon and silicon-rich nitride layers as a protection against discharges in Micro-Patterned Gaseous Detectors (MPGDs). When the anode is protected by a high resistivity layer, discharge signals are limited in charge. A signal reduction is expected when the layers are too thick; simulations presented in this paper indicate that layers up to 10
μm thick can be applied without significantly degrading the detector performance. Layers of amorphous silicon and silicon-rich nitride have been deposited on top of Timepix and Medipix2 chips in GridPix detectors; with this, chips survive naturally occurring as well as intentionally produced discharges. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2010.11.116 |