Loading…
Nanodiamond-based two-step sampling of multiply and singly phosphorylated peptides for MALDI-TOF mass spectrometry analysis
Simultaneous detection of multiply and singly phosphorylated peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is challenging because of suppression effects during ionization. In oder to overcome this problem, this study presents a new approac...
Saved in:
Published in: | Analyst (London) 2011-05, Vol.136 (9), p.1922-1927 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Simultaneous detection of multiply and singly phosphorylated peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is challenging because of suppression effects during ionization. In oder to overcome this problem, this study presents a new approach to improve the detection of phosphopeptides by stepwise enrichment using polyarginine-coated (PA-coated) and titanium dioxide-coated (TiO(2)-coated) nanodiamonds for fractionation of multiply and singly phosphorylated peptides prior to on-probe MALDI MS analysis. The feasibility of this approach was demonstrated using synthetic peptides containing different numbers of phosphate groups, tryptic digests of α-casein, β-casein, and complex protein mixtures. The high specificity of the approach is shown in its effective enrichment and fractionation of phosphopeptides from the digest of β-casein and bovine serum albumin at a molar ratio as low as 1 : 1000, which out-performs the commercial Fe(3+)-IMAC and TiO(2) isolation kits. It offers a simple and effective alternative for the fractionation and identification of multiply and singly phosphorylated peptides by MALDI MS and allows for deduction of more information from limited starting materials. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/c0an01046d |