Loading…
Contribution of arterial Windkessel in low-frequency cerebral hemodynamics during transient changes in blood pressure
The Windkessel properties of the vasculature are known to play a significant role in buffering arterial pulsations, but their potential importance in dampening low-frequency fluctuations in cerebral blood flow has not been clearly examined. In this study, we quantitatively assessed the contribution...
Saved in:
Published in: | Journal of applied physiology (1985) 2011-04, Vol.110 (4), p.917-925 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Windkessel properties of the vasculature are known to play a significant role in buffering arterial pulsations, but their potential importance in dampening low-frequency fluctuations in cerebral blood flow has not been clearly examined. In this study, we quantitatively assessed the contribution of arterial Windkessel (peripheral compliance and resistance) in the dynamic cerebral blood flow response to relatively large and acute changes in blood pressure. Middle cerebral artery flow velocity (MCA(V); transcranial Doppler) and arterial blood pressure were recorded from 14 healthy subjects. Low-pass-filtered pressure-flow responses ( |
---|---|
ISSN: | 8750-7587 1522-1601 |
DOI: | 10.1152/japplphysiol.01407.2010 |