Loading…

Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique

Tailored QD loading as a part of polyelectrolyte layers makes it possible to design polymer particles with pH-dependent fluorescence intensity and use these particles for sensitive and selective detection of copper(II) ion. [Display omitted] ► Fluorescent polymer particles are prepared by LbL techni...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2011-05, Vol.357 (2), p.265-272
Main Authors: Generalova, Alla N., Oleinikov, Vladimir A., Zarifullina, Margarita M., Lankina, Ekaterina V., Sizova, Svetlana V., Artemyev, Michail V., Zubov, Vitali P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613
cites cdi_FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613
container_end_page 272
container_issue 2
container_start_page 265
container_title Journal of colloid and interface science
container_volume 357
creator Generalova, Alla N.
Oleinikov, Vladimir A.
Zarifullina, Margarita M.
Lankina, Ekaterina V.
Sizova, Svetlana V.
Artemyev, Michail V.
Zubov, Vitali P.
description Tailored QD loading as a part of polyelectrolyte layers makes it possible to design polymer particles with pH-dependent fluorescence intensity and use these particles for sensitive and selective detection of copper(II) ion. [Display omitted] ► Fluorescent polymer particles are prepared by LbL technique. ► Close to surface QD deposition results in pH-sensitivity of particle fluorescence. ► Bioligands as outermost shell determine the fluorescence properties of particles. ► The outer shell of BSA allows the particle design for detection of Cu(II) ion. Optical sensing polymer particles with tailored semiconductor nanocrystal (QD) loading are prepared by layer-by-layer deposition technique (LbL). Polyacrolein particles of 1.2μm diameter are used as solid support for deposition of hydrophilic CdSe/ZnS nanocrystal/polyelectrolyte multilayers formed by electrostatic interactions. The pH-dependent fluorescence of QDs and pH-dependent conformations of polyelectrolytes, which likely passivate the surface state of nanocrystals, allow a creation of both mono- and multiplex coded polymer particles with pH-dependent fluorescence intensity. Bovine serum albumin (BSA) as outermost layer makes it possible to design the optical sensing polymer particles with reversibly responded fluorescence at pH variations. The fluorescence of such polymer particles with BSA outer layer is sensitive to copper(II) ion while the fluorescence of these particles is practically insensitive to the other divalent cations (Zn2+, Ca2+, Ba2+, Co2+, Mg2+). The detection limit of Cu2+ is about 15nM. Adaptation of LbL method to prepare QD-labeled polymer particles with enhanced complexity (e.g. several types of QDs, multiple biofunctionality) is expected to open new opportunities in biotechnological applications.
doi_str_mv 10.1016/j.jcis.2011.02.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_862784244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979711001615</els_id><sourcerecordid>859059589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EopfCH2AB3tFNgh-xHUtsqoqXVKkL6NpynElx5BundlIp_x6HW1iWlcee7xyP5iD0lpKaEio_jvXofK4ZobQmrCaEPUMHSrSoFCX8OTqUF1pppdUZepXzSAoohH6JzhjlSlHJD2i8mRfvbMAZpuynO3y_2mlZj7iPSxVsBwF6PMewWZdiAD_h2aaiCJDxnKBcSr_bcLAbpKrbqj8F7mGO2S8-TngB92vy9yu8Ri8GGzK8eTzP0e2Xzz-vvlXXN1-_X11eV65pmqXM3g2cDJoPoLW1gmtNtZR2kMQ1WrOmtYPohG1BKi0El4UZWmg7TZWUkvJz9OHkO6dYvs2LOfrsIAQ7QVyzaSVTbcOa5v-k0ERo0epCXjxJUiW4oIqTHWUntCws5wSDmZM_2rQZSsyemxnNnpvZczOEmZJSEb179F-7I_T_JH-DKsD7EzDYaOxdKvrbH8VBEkJk2_Dd4tOJgLLbBw_JZOdhctD7BG4xffRPTfAbkVOzBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753517309</pqid></control><display><type>article</type><title>Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique</title><source>Elsevier</source><creator>Generalova, Alla N. ; Oleinikov, Vladimir A. ; Zarifullina, Margarita M. ; Lankina, Ekaterina V. ; Sizova, Svetlana V. ; Artemyev, Michail V. ; Zubov, Vitali P.</creator><creatorcontrib>Generalova, Alla N. ; Oleinikov, Vladimir A. ; Zarifullina, Margarita M. ; Lankina, Ekaterina V. ; Sizova, Svetlana V. ; Artemyev, Michail V. ; Zubov, Vitali P.</creatorcontrib><description>Tailored QD loading as a part of polyelectrolyte layers makes it possible to design polymer particles with pH-dependent fluorescence intensity and use these particles for sensitive and selective detection of copper(II) ion. [Display omitted] ► Fluorescent polymer particles are prepared by LbL technique. ► Close to surface QD deposition results in pH-sensitivity of particle fluorescence. ► Bioligands as outermost shell determine the fluorescence properties of particles. ► The outer shell of BSA allows the particle design for detection of Cu(II) ion. Optical sensing polymer particles with tailored semiconductor nanocrystal (QD) loading are prepared by layer-by-layer deposition technique (LbL). Polyacrolein particles of 1.2μm diameter are used as solid support for deposition of hydrophilic CdSe/ZnS nanocrystal/polyelectrolyte multilayers formed by electrostatic interactions. The pH-dependent fluorescence of QDs and pH-dependent conformations of polyelectrolytes, which likely passivate the surface state of nanocrystals, allow a creation of both mono- and multiplex coded polymer particles with pH-dependent fluorescence intensity. Bovine serum albumin (BSA) as outermost layer makes it possible to design the optical sensing polymer particles with reversibly responded fluorescence at pH variations. The fluorescence of such polymer particles with BSA outer layer is sensitive to copper(II) ion while the fluorescence of these particles is practically insensitive to the other divalent cations (Zn2+, Ca2+, Ba2+, Co2+, Mg2+). The detection limit of Cu2+ is about 15nM. Adaptation of LbL method to prepare QD-labeled polymer particles with enhanced complexity (e.g. several types of QDs, multiple biofunctionality) is expected to open new opportunities in biotechnological applications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.02.002</identifier><identifier>PMID: 21377163</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acrolein - chemistry ; Animals ; barium ; bovine serum albumin ; Cadmium selenides ; calcium ; cations ; Cattle ; cobalt ; copper ; Copper(II) detection ; Deposition ; Detection ; detection limit ; electrolytes ; electrostatic interactions ; Fluorescence ; Hydrogen-Ion Concentration ; hydrophilicity ; Immobilized Proteins - chemistry ; magnesium ; Models, Biological ; Multiplexing ; Nanocrystals ; Nanoparticles - chemistry ; pH-sensitivity ; Polyacrolein particles ; Polyelectrolytes ; polymers ; Polymers - chemistry ; Quantum Dots ; Semiconductors ; Serum albumin ; Serum Albumin, Bovine - chemistry ; Spectrometry, Fluorescence ; Surface Properties ; zinc</subject><ispartof>Journal of colloid and interface science, 2011-05, Vol.357 (2), p.265-272</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613</citedby><cites>FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21377163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Generalova, Alla N.</creatorcontrib><creatorcontrib>Oleinikov, Vladimir A.</creatorcontrib><creatorcontrib>Zarifullina, Margarita M.</creatorcontrib><creatorcontrib>Lankina, Ekaterina V.</creatorcontrib><creatorcontrib>Sizova, Svetlana V.</creatorcontrib><creatorcontrib>Artemyev, Michail V.</creatorcontrib><creatorcontrib>Zubov, Vitali P.</creatorcontrib><title>Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Tailored QD loading as a part of polyelectrolyte layers makes it possible to design polymer particles with pH-dependent fluorescence intensity and use these particles for sensitive and selective detection of copper(II) ion. [Display omitted] ► Fluorescent polymer particles are prepared by LbL technique. ► Close to surface QD deposition results in pH-sensitivity of particle fluorescence. ► Bioligands as outermost shell determine the fluorescence properties of particles. ► The outer shell of BSA allows the particle design for detection of Cu(II) ion. Optical sensing polymer particles with tailored semiconductor nanocrystal (QD) loading are prepared by layer-by-layer deposition technique (LbL). Polyacrolein particles of 1.2μm diameter are used as solid support for deposition of hydrophilic CdSe/ZnS nanocrystal/polyelectrolyte multilayers formed by electrostatic interactions. The pH-dependent fluorescence of QDs and pH-dependent conformations of polyelectrolytes, which likely passivate the surface state of nanocrystals, allow a creation of both mono- and multiplex coded polymer particles with pH-dependent fluorescence intensity. Bovine serum albumin (BSA) as outermost layer makes it possible to design the optical sensing polymer particles with reversibly responded fluorescence at pH variations. The fluorescence of such polymer particles with BSA outer layer is sensitive to copper(II) ion while the fluorescence of these particles is practically insensitive to the other divalent cations (Zn2+, Ca2+, Ba2+, Co2+, Mg2+). The detection limit of Cu2+ is about 15nM. Adaptation of LbL method to prepare QD-labeled polymer particles with enhanced complexity (e.g. several types of QDs, multiple biofunctionality) is expected to open new opportunities in biotechnological applications.</description><subject>Acrolein - chemistry</subject><subject>Animals</subject><subject>barium</subject><subject>bovine serum albumin</subject><subject>Cadmium selenides</subject><subject>calcium</subject><subject>cations</subject><subject>Cattle</subject><subject>cobalt</subject><subject>copper</subject><subject>Copper(II) detection</subject><subject>Deposition</subject><subject>Detection</subject><subject>detection limit</subject><subject>electrolytes</subject><subject>electrostatic interactions</subject><subject>Fluorescence</subject><subject>Hydrogen-Ion Concentration</subject><subject>hydrophilicity</subject><subject>Immobilized Proteins - chemistry</subject><subject>magnesium</subject><subject>Models, Biological</subject><subject>Multiplexing</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>pH-sensitivity</subject><subject>Polyacrolein particles</subject><subject>Polyelectrolytes</subject><subject>polymers</subject><subject>Polymers - chemistry</subject><subject>Quantum Dots</subject><subject>Semiconductors</subject><subject>Serum albumin</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Spectrometry, Fluorescence</subject><subject>Surface Properties</subject><subject>zinc</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0EopfCH2AB3tFNgh-xHUtsqoqXVKkL6NpynElx5BundlIp_x6HW1iWlcee7xyP5iD0lpKaEio_jvXofK4ZobQmrCaEPUMHSrSoFCX8OTqUF1pppdUZepXzSAoohH6JzhjlSlHJD2i8mRfvbMAZpuynO3y_2mlZj7iPSxVsBwF6PMewWZdiAD_h2aaiCJDxnKBcSr_bcLAbpKrbqj8F7mGO2S8-TngB92vy9yu8Ri8GGzK8eTzP0e2Xzz-vvlXXN1-_X11eV65pmqXM3g2cDJoPoLW1gmtNtZR2kMQ1WrOmtYPohG1BKi0El4UZWmg7TZWUkvJz9OHkO6dYvs2LOfrsIAQ7QVyzaSVTbcOa5v-k0ERo0epCXjxJUiW4oIqTHWUntCws5wSDmZM_2rQZSsyemxnNnpvZczOEmZJSEb179F-7I_T_JH-DKsD7EzDYaOxdKvrbH8VBEkJk2_Dd4tOJgLLbBw_JZOdhctD7BG4xffRPTfAbkVOzBw</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Generalova, Alla N.</creator><creator>Oleinikov, Vladimir A.</creator><creator>Zarifullina, Margarita M.</creator><creator>Lankina, Ekaterina V.</creator><creator>Sizova, Svetlana V.</creator><creator>Artemyev, Michail V.</creator><creator>Zubov, Vitali P.</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110515</creationdate><title>Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique</title><author>Generalova, Alla N. ; Oleinikov, Vladimir A. ; Zarifullina, Margarita M. ; Lankina, Ekaterina V. ; Sizova, Svetlana V. ; Artemyev, Michail V. ; Zubov, Vitali P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrolein - chemistry</topic><topic>Animals</topic><topic>barium</topic><topic>bovine serum albumin</topic><topic>Cadmium selenides</topic><topic>calcium</topic><topic>cations</topic><topic>Cattle</topic><topic>cobalt</topic><topic>copper</topic><topic>Copper(II) detection</topic><topic>Deposition</topic><topic>Detection</topic><topic>detection limit</topic><topic>electrolytes</topic><topic>electrostatic interactions</topic><topic>Fluorescence</topic><topic>Hydrogen-Ion Concentration</topic><topic>hydrophilicity</topic><topic>Immobilized Proteins - chemistry</topic><topic>magnesium</topic><topic>Models, Biological</topic><topic>Multiplexing</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>pH-sensitivity</topic><topic>Polyacrolein particles</topic><topic>Polyelectrolytes</topic><topic>polymers</topic><topic>Polymers - chemistry</topic><topic>Quantum Dots</topic><topic>Semiconductors</topic><topic>Serum albumin</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Spectrometry, Fluorescence</topic><topic>Surface Properties</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Generalova, Alla N.</creatorcontrib><creatorcontrib>Oleinikov, Vladimir A.</creatorcontrib><creatorcontrib>Zarifullina, Margarita M.</creatorcontrib><creatorcontrib>Lankina, Ekaterina V.</creatorcontrib><creatorcontrib>Sizova, Svetlana V.</creatorcontrib><creatorcontrib>Artemyev, Michail V.</creatorcontrib><creatorcontrib>Zubov, Vitali P.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Generalova, Alla N.</au><au>Oleinikov, Vladimir A.</au><au>Zarifullina, Margarita M.</au><au>Lankina, Ekaterina V.</au><au>Sizova, Svetlana V.</au><au>Artemyev, Michail V.</au><au>Zubov, Vitali P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>357</volume><issue>2</issue><spage>265</spage><epage>272</epage><pages>265-272</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>Tailored QD loading as a part of polyelectrolyte layers makes it possible to design polymer particles with pH-dependent fluorescence intensity and use these particles for sensitive and selective detection of copper(II) ion. [Display omitted] ► Fluorescent polymer particles are prepared by LbL technique. ► Close to surface QD deposition results in pH-sensitivity of particle fluorescence. ► Bioligands as outermost shell determine the fluorescence properties of particles. ► The outer shell of BSA allows the particle design for detection of Cu(II) ion. Optical sensing polymer particles with tailored semiconductor nanocrystal (QD) loading are prepared by layer-by-layer deposition technique (LbL). Polyacrolein particles of 1.2μm diameter are used as solid support for deposition of hydrophilic CdSe/ZnS nanocrystal/polyelectrolyte multilayers formed by electrostatic interactions. The pH-dependent fluorescence of QDs and pH-dependent conformations of polyelectrolytes, which likely passivate the surface state of nanocrystals, allow a creation of both mono- and multiplex coded polymer particles with pH-dependent fluorescence intensity. Bovine serum albumin (BSA) as outermost layer makes it possible to design the optical sensing polymer particles with reversibly responded fluorescence at pH variations. The fluorescence of such polymer particles with BSA outer layer is sensitive to copper(II) ion while the fluorescence of these particles is practically insensitive to the other divalent cations (Zn2+, Ca2+, Ba2+, Co2+, Mg2+). The detection limit of Cu2+ is about 15nM. Adaptation of LbL method to prepare QD-labeled polymer particles with enhanced complexity (e.g. several types of QDs, multiple biofunctionality) is expected to open new opportunities in biotechnological applications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21377163</pmid><doi>10.1016/j.jcis.2011.02.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2011-05, Vol.357 (2), p.265-272
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_862784244
source Elsevier
subjects Acrolein - chemistry
Animals
barium
bovine serum albumin
Cadmium selenides
calcium
cations
Cattle
cobalt
copper
Copper(II) detection
Deposition
Detection
detection limit
electrolytes
electrostatic interactions
Fluorescence
Hydrogen-Ion Concentration
hydrophilicity
Immobilized Proteins - chemistry
magnesium
Models, Biological
Multiplexing
Nanocrystals
Nanoparticles - chemistry
pH-sensitivity
Polyacrolein particles
Polyelectrolytes
polymers
Polymers - chemistry
Quantum Dots
Semiconductors
Serum albumin
Serum Albumin, Bovine - chemistry
Spectrometry, Fluorescence
Surface Properties
zinc
title Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20sensing%20quantum%20dot-labeled%20polyacrolein%20particles%20prepared%20by%20layer-by-layer%20deposition%20technique&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Generalova,%20Alla%20N.&rft.date=2011-05-15&rft.volume=357&rft.issue=2&rft.spage=265&rft.epage=272&rft.pages=265-272&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2011.02.002&rft_dat=%3Cproquest_cross%3E859059589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-71bf30f93fe99aa53991966af60c499248af5b5a8e6795536aa5f8e8b91766613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753517309&rft_id=info:pmid/21377163&rfr_iscdi=true