Loading…

Regions of interest for resting-state fMRI analysis determined by inter-voxel cross-correlation

In investigations of the brain's resting state using functional magnetic resonance imaging (fMRI), a seed-based approach is commonly used to identify brain regions that are functionally connected. The seed is typically identified based on anatomical landmarks, coordinates, or the location of br...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2011-05, Vol.56 (1), p.246-251
Main Authors: Golestani, Ali-Mohammad, Goodyear, Bradley G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In investigations of the brain's resting state using functional magnetic resonance imaging (fMRI), a seed-based approach is commonly used to identify brain regions that are functionally connected. The seed is typically identified based on anatomical landmarks, coordinates, or the location of brain activity during a separate task. However, anatomical boundaries may be difficult to discern, and designing a task to interrogate desired brain regions of interest may be difficult, especially when subject compliance is in question, as in many patient studies. In this study, a seed selection method based on inter-voxel cross-correlation of resting-state signals (i.e., a rest-based seed) is introduced. This method was used to determine resting-state connectivity between the left and right motor cortices in fifteen healthy right-handed subjects, and results were compared to seed selection based on the most significantly activated voxels during a separate task (i.e., a task-based seed). The z-coordinate of the centers of mass of the rest-based and task-based seeds within motor cortex were significantly different; task-based seeds were closer to the pial surface. Connectivity maps generated by rest-based seeds and task-based seeds were statistically equivalent; however, only 3 min of data were required to reach significance for rest-based seeds compared to an estimated 6 min for task-based seeds. Rest-based seeds also exhibited good inter-experimenter reproducibility. These findings suggest that seed regions based on inter-voxel cross-correlation of resting-state signals can be used as an alternative approach for connectivity analysis when task-related activity is not available or difficult to acquire, as in some patient studies. ► Seed regions for resting-state can be chosen based by inter-voxel cross-correlation. ► Inter-voxel cross-correlation seeds provide same maps as task-based seeds. ► Separate tasks are not required to define functional based seed regions.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2011.02.038