Loading…
Reducing the late sodium current improves cardiac function during sodium pump inhibition by ouabain
Inhibition by cardiac glycosides of Na(+), K(+)-ATPase reduces sodium efflux from myocytes and may lead to Na(+) and Ca(2+) overload and detrimental effects on mechanical function, energy metabolism, and electrical activity. We hypothesized that inhibition of sodium persistent inward current (late I...
Saved in:
Published in: | The Journal of pharmacology and experimental therapeutics 2011-05, Vol.337 (2), p.513-523 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inhibition by cardiac glycosides of Na(+), K(+)-ATPase reduces sodium efflux from myocytes and may lead to Na(+) and Ca(2+) overload and detrimental effects on mechanical function, energy metabolism, and electrical activity. We hypothesized that inhibition of sodium persistent inward current (late I(Na)) would reduce ouabain's effect to cause cellular Na(+) loading and its detrimental metabolic (decrease of ATP) and functional (arrhythmias, contracture) effects. Therefore, we determined effects of ouabain on concentrations of intracellular sodium (Na(+)(i)) and high-energy phosphates using (23)Na and (31)P NMR, the amplitude of late I(Na) using the whole-cell patch-clamp technique, and contractility and electrical activity of guinea pig isolated hearts, papillary muscles, and ventricular myocytes in the absence and presence of inhibitors of late I(Na). Ouabain (1-1.3 μM) increased Na(+)(i) and late I(Na) of guinea pig isolated hearts and myocytes by 3.7- and 4.2-fold, respectively. The late I(Na) inhibitors ranolazine and tetrodotoxin significantly reduced ouabain-stimulated increases in Na(+)(i) and late I(Na). Reductions of ATP and phosphocreatine contents and increased diastolic tension in ouabain-treated hearts were also markedly attenuated by ranolazine. Furthermore, the ouabain-induced increase of late I(Na) was also attenuated by the Ca(2+)-calmodulin-dependent kinase I inhibitors KN-93 [N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide] and autocamide-2 related inhibitory peptide, but not by KN-92 [2-[N-(4'-methoxybenzenesulfonyl)]amino-N-(4'-chlorophenyl)-2-propenyl-N-methylbenzylamine phosphate]. We conclude that ouabain-induced Na(+) and Ca(2+) overload is ameliorated by the inhibition of late I(Na). |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.110.176776 |