Loading…

Polyaniline-Functionalized Carbon Nanotube Supported Platinum Catalysts

Electrocatalytically active platinum (Pt) nanoparticles on a carbon nanotube (CNT) with enhanced nucleation and stability have been demonstrated through introduction of electron-conducting polyaniline (PANI) to bridge the Pt nanoparticles and CNT walls with the presence of platinum−nitride (Pt−N) bo...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2011-05, Vol.27 (9), p.5582-5588
Main Authors: He, Daping, Zeng, Chao, Xu, Cheng, Cheng, Niancai, Li, Huaiguang, Mu, Shichun, Pan, Mu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrocatalytically active platinum (Pt) nanoparticles on a carbon nanotube (CNT) with enhanced nucleation and stability have been demonstrated through introduction of electron-conducting polyaniline (PANI) to bridge the Pt nanoparticles and CNT walls with the presence of platinum−nitride (Pt−N) bonding and π−π bonding. The Pt colloids were prepared through ethanol reduction under the protection of aniline, the CNT was dispersed well with the existence of aniline in the solution, and aniline was polymerized in the presence of a protonic acid (HCl) and an oxidant (NH4S2O8). The synthesized PANI is found to wrap around the CNT as a result of π−π bonding, and highly dispersed Pt nanoparticles are loaded onto the CNT with narrowly distributed particle sizes ranging from 2.0 to 4.0 nm due to the polymer stabilization and existence of Pt−N bonding. The Pt−PANI/CNT catalysts are electroactive and exhibit excellent electrochemical stability and therefore promise potential applications in proton exchange membrane fuel cells.
ISSN:0743-7463
1520-5827
DOI:10.1021/la2003589