Loading…
Impact of a global quadratic potential on galactic rotation curves
We present a conformal gravity fit to the 20 largest of a sample of 110 spiral galaxies. We identify the presence of a universal quadratic potential V(κ)(r)=-κc²r²/2 with κ=9.54×10⁻⁵⁴ cm⁻² induced by cosmic inhomogeneities. When V(κ)(r) is taken in conjunction with both a universal linear potential...
Saved in:
Published in: | Physical review letters 2011-03, Vol.106 (12), p.121101-121101, Article 121101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a conformal gravity fit to the 20 largest of a sample of 110 spiral galaxies. We identify the presence of a universal quadratic potential V(κ)(r)=-κc²r²/2 with κ=9.54×10⁻⁵⁴ cm⁻² induced by cosmic inhomogeneities. When V(κ)(r) is taken in conjunction with both a universal linear potential V(γ₀)(r)=γ₀c²r/2 with γ₀=3.06×10⁻³⁰ cm⁻¹ generated by the homogeneous cosmic background and the contribution generated by the local luminous matter in galaxies, the theory then accounts for the rotation curve systematics observed in the entire 110 galaxies, without the need for any dark matter whatsoever. Our study suggests that using dark matter may be nothing more than an attempt to describe global effects in purely local galactic terms. With V(κ)(r) being negative, galaxies can only support bound orbits up to distances of order γ₀/κ=100kpc, with global physics imposing a limit on the size of galaxies. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.106.121101 |