Loading…

Self-sustaining oscillations in complex networks of excitable elements

Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a singl...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3 Pt 2), p.037102-037102, Article 037102
Main Authors: McGraw, Patrick, Menzinger, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3
cites cdi_FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3
container_end_page 037102
container_issue 3 Pt 2
container_start_page 037102
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 83
creator McGraw, Patrick
Menzinger, Michael
description Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation periodically circulates. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops, and explain key features of their distribution.
doi_str_mv 10.1103/physreve.83.037102
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_863769527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>863769527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EoqXwAyxQdqxS_IgTe4mqFpAqgXisLdu5BkMSlzgp7d-TqoXVncXMaO5B6JLgKSGY3aw-trGFNUwFm2JWEEyP0JhwjlPKivx4p5lMWcH5CJ3F-Ikxo0xkp2hECSdFTsUYLV6gcmnsY6d945v3JETrq0p3PjQx8U1iQ72qYJM00P2E9ismwSWwsb7TpoIEKqih6eI5OnG6inBxuBP0tpi_zu7T5ePdw-x2mVqWiy7lOc2xczLLXI45xpktjWXS4FIKZwfFQVJjBGOyNMY5XtjSaa6zTILFpWYTdL3vXbXhu4fYqdpHC8PgBkIflciHzyWnxeCke6dtQxwwObVqfa3brSJY7fCppwHfM6znSjC1xzeErg71vamh_I_88WK_cRZvNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863769527</pqid></control><display><type>article</type><title>Self-sustaining oscillations in complex networks of excitable elements</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>McGraw, Patrick ; Menzinger, Michael</creator><creatorcontrib>McGraw, Patrick ; Menzinger, Michael</creatorcontrib><description>Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation periodically circulates. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops, and explain key features of their distribution.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.83.037102</identifier><identifier>PMID: 21517628</identifier><language>eng</language><publisher>United States</publisher><subject>Models, Theoretical ; Periodicity ; Stochastic Processes</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3 Pt 2), p.037102-037102, Article 037102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3</citedby><cites>FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21517628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGraw, Patrick</creatorcontrib><creatorcontrib>Menzinger, Michael</creatorcontrib><title>Self-sustaining oscillations in complex networks of excitable elements</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation periodically circulates. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops, and explain key features of their distribution.</description><subject>Models, Theoretical</subject><subject>Periodicity</subject><subject>Stochastic Processes</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EoqXwAyxQdqxS_IgTe4mqFpAqgXisLdu5BkMSlzgp7d-TqoXVncXMaO5B6JLgKSGY3aw-trGFNUwFm2JWEEyP0JhwjlPKivx4p5lMWcH5CJ3F-Ikxo0xkp2hECSdFTsUYLV6gcmnsY6d945v3JETrq0p3PjQx8U1iQ72qYJM00P2E9ismwSWwsb7TpoIEKqih6eI5OnG6inBxuBP0tpi_zu7T5ePdw-x2mVqWiy7lOc2xczLLXI45xpktjWXS4FIKZwfFQVJjBGOyNMY5XtjSaa6zTILFpWYTdL3vXbXhu4fYqdpHC8PgBkIflciHzyWnxeCke6dtQxwwObVqfa3brSJY7fCppwHfM6znSjC1xzeErg71vamh_I_88WK_cRZvNg</recordid><startdate>20110329</startdate><enddate>20110329</enddate><creator>McGraw, Patrick</creator><creator>Menzinger, Michael</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110329</creationdate><title>Self-sustaining oscillations in complex networks of excitable elements</title><author>McGraw, Patrick ; Menzinger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Models, Theoretical</topic><topic>Periodicity</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGraw, Patrick</creatorcontrib><creatorcontrib>Menzinger, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGraw, Patrick</au><au>Menzinger, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-sustaining oscillations in complex networks of excitable elements</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-03-29</date><risdate>2011</risdate><volume>83</volume><issue>3 Pt 2</issue><spage>037102</spage><epage>037102</epage><pages>037102-037102</pages><artnum>037102</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation periodically circulates. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops, and explain key features of their distribution.</abstract><cop>United States</cop><pmid>21517628</pmid><doi>10.1103/physreve.83.037102</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-03, Vol.83 (3 Pt 2), p.037102-037102, Article 037102
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_863769527
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Models, Theoretical
Periodicity
Stochastic Processes
title Self-sustaining oscillations in complex networks of excitable elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-sustaining%20oscillations%20in%20complex%20networks%20of%20excitable%20elements&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=McGraw,%20Patrick&rft.date=2011-03-29&rft.volume=83&rft.issue=3%20Pt%202&rft.spage=037102&rft.epage=037102&rft.pages=037102-037102&rft.artnum=037102&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/physreve.83.037102&rft_dat=%3Cproquest_cross%3E863769527%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-56260ff944f605004cdbc39b0d98fcc395e92bb8339dbbff57cdfa5a449ec0da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863769527&rft_id=info:pmid/21517628&rfr_iscdi=true