Loading…
An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations
In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori e...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2011, Vol.200 (1-4), p.178-188 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433 |
container_end_page | 188 |
container_issue | 1-4 |
container_start_page | 178 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 200 |
creator | Armentano, M.G. Padra, C. Rodríguez, R. Scheble, M. |
description | In this paper we introduce an
hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an
hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence. |
doi_str_mv | 10.1016/j.cma.2010.08.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864389564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782510002367</els_id><sourcerecordid>864389564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</originalsourceid><addsrcrecordid>eNp9kM1qGzEQx0VoIa7bB8hNl5DTOvrYD5meQkjSgCGX5FYQs9oRltGutpJsyC3v0Dfsk0TGocfMYYYZfvMf5k_IBWcrznh7vVuZEVaClZ6pFWPyjCy46taV4FJ9IQvG6qbqlGjOybeUdqyE4mJBft9MdDtT6yaXkaLHEadMYYA5uwPSZLZlQnOgKfjS5y3SDcweDNIxDOipDZFav3fDv7e_hXEDPbg-QnZhSt_JVws-4Y-PuiQv93fPt7-qzdPD4-3NpjI1E7myQgphaws9KlTrBoHJToEZZF_uIG9Z13FmsRG2E4UUYG0LvephXaKWckmuTrpzDH_2mLIeXTLoPUwY9kmrtpZFt-Ql4SfSxJBSRKvn6EaIr5ozfTRS73QxUh-N1EzpYmTZufxQh2TA2wiTcen_opCtbNaqK9zPE4fl1YPDqJNxOBkcXEST9RDcJ1feAZsFiiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864389564</pqid></control><display><type>article</type><title>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Armentano, M.G. ; Padra, C. ; Rodríguez, R. ; Scheble, M.</creator><creatorcontrib>Armentano, M.G. ; Padra, C. ; Rodríguez, R. ; Scheble, M.</creatorcontrib><description>In this paper we introduce an
hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an
hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2010.08.003</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>A posteriori error estimates ; Computation ; Convergence ; Errors ; Estimates ; Estimators ; Exact sciences and technology ; Finite element method ; Finite elements ; Fluid–structure interaction ; Fundamental areas of phenomenology (including applications) ; hp Version ; Mathematical analysis ; Mathematical models ; Physics ; Solid mechanics ; Spectral approximation ; Structural and continuum mechanics ; Vibration problem ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Computer methods in applied mechanics and engineering, 2011, Vol.200 (1-4), p.178-188</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</citedby><cites>FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23635987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Armentano, M.G.</creatorcontrib><creatorcontrib>Padra, C.</creatorcontrib><creatorcontrib>Rodríguez, R.</creatorcontrib><creatorcontrib>Scheble, M.</creatorcontrib><title>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper we introduce an
hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an
hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.</description><subject>A posteriori error estimates</subject><subject>Computation</subject><subject>Convergence</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Fluid–structure interaction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>hp Version</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Spectral approximation</subject><subject>Structural and continuum mechanics</subject><subject>Vibration problem</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEQx0VoIa7bB8hNl5DTOvrYD5meQkjSgCGX5FYQs9oRltGutpJsyC3v0Dfsk0TGocfMYYYZfvMf5k_IBWcrznh7vVuZEVaClZ6pFWPyjCy46taV4FJ9IQvG6qbqlGjOybeUdqyE4mJBft9MdDtT6yaXkaLHEadMYYA5uwPSZLZlQnOgKfjS5y3SDcweDNIxDOipDZFav3fDv7e_hXEDPbg-QnZhSt_JVws-4Y-PuiQv93fPt7-qzdPD4-3NpjI1E7myQgphaws9KlTrBoHJToEZZF_uIG9Z13FmsRG2E4UUYG0LvephXaKWckmuTrpzDH_2mLIeXTLoPUwY9kmrtpZFt-Ql4SfSxJBSRKvn6EaIr5ozfTRS73QxUh-N1EzpYmTZufxQh2TA2wiTcen_opCtbNaqK9zPE4fl1YPDqJNxOBkcXEST9RDcJ1feAZsFiiY</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Armentano, M.G.</creator><creator>Padra, C.</creator><creator>Rodríguez, R.</creator><creator>Scheble, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</title><author>Armentano, M.G. ; Padra, C. ; Rodríguez, R. ; Scheble, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A posteriori error estimates</topic><topic>Computation</topic><topic>Convergence</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Fluid–structure interaction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>hp Version</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Spectral approximation</topic><topic>Structural and continuum mechanics</topic><topic>Vibration problem</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armentano, M.G.</creatorcontrib><creatorcontrib>Padra, C.</creatorcontrib><creatorcontrib>Rodríguez, R.</creatorcontrib><creatorcontrib>Scheble, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armentano, M.G.</au><au>Padra, C.</au><au>Rodríguez, R.</au><au>Scheble, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2011</date><risdate>2011</risdate><volume>200</volume><issue>1-4</issue><spage>178</spage><epage>188</epage><pages>178-188</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper we introduce an
hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an
hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2010.08.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2011, Vol.200 (1-4), p.178-188 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_864389564 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | A posteriori error estimates Computation Convergence Errors Estimates Estimators Exact sciences and technology Finite element method Finite elements Fluid–structure interaction Fundamental areas of phenomenology (including applications) hp Version Mathematical analysis Mathematical models Physics Solid mechanics Spectral approximation Structural and continuum mechanics Vibration problem Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20hp%20finite%20element%20adaptive%20scheme%20to%20solve%20the%20Laplace%20model%20for%20fluid%E2%80%93solid%20vibrations&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Armentano,%20M.G.&rft.date=2011&rft.volume=200&rft.issue=1-4&rft.spage=178&rft.epage=188&rft.pages=178-188&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2010.08.003&rft_dat=%3Cproquest_cross%3E864389564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864389564&rft_id=info:pmid/&rfr_iscdi=true |