Loading…

An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations

In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori e...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2011, Vol.200 (1-4), p.178-188
Main Authors: Armentano, M.G., Padra, C., Rodríguez, R., Scheble, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433
cites cdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433
container_end_page 188
container_issue 1-4
container_start_page 178
container_title Computer methods in applied mechanics and engineering
container_volume 200
creator Armentano, M.G.
Padra, C.
Rodríguez, R.
Scheble, M.
description In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.
doi_str_mv 10.1016/j.cma.2010.08.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864389564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782510002367</els_id><sourcerecordid>864389564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</originalsourceid><addsrcrecordid>eNp9kM1qGzEQx0VoIa7bB8hNl5DTOvrYD5meQkjSgCGX5FYQs9oRltGutpJsyC3v0Dfsk0TGocfMYYYZfvMf5k_IBWcrznh7vVuZEVaClZ6pFWPyjCy46taV4FJ9IQvG6qbqlGjOybeUdqyE4mJBft9MdDtT6yaXkaLHEadMYYA5uwPSZLZlQnOgKfjS5y3SDcweDNIxDOipDZFav3fDv7e_hXEDPbg-QnZhSt_JVws-4Y-PuiQv93fPt7-qzdPD4-3NpjI1E7myQgphaws9KlTrBoHJToEZZF_uIG9Z13FmsRG2E4UUYG0LvephXaKWckmuTrpzDH_2mLIeXTLoPUwY9kmrtpZFt-Ql4SfSxJBSRKvn6EaIr5ozfTRS73QxUh-N1EzpYmTZufxQh2TA2wiTcen_opCtbNaqK9zPE4fl1YPDqJNxOBkcXEST9RDcJ1feAZsFiiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864389564</pqid></control><display><type>article</type><title>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Armentano, M.G. ; Padra, C. ; Rodríguez, R. ; Scheble, M.</creator><creatorcontrib>Armentano, M.G. ; Padra, C. ; Rodríguez, R. ; Scheble, M.</creatorcontrib><description>In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2010.08.003</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>A posteriori error estimates ; Computation ; Convergence ; Errors ; Estimates ; Estimators ; Exact sciences and technology ; Finite element method ; Finite elements ; Fluid–structure interaction ; Fundamental areas of phenomenology (including applications) ; hp Version ; Mathematical analysis ; Mathematical models ; Physics ; Solid mechanics ; Spectral approximation ; Structural and continuum mechanics ; Vibration problem ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Computer methods in applied mechanics and engineering, 2011, Vol.200 (1-4), p.178-188</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</citedby><cites>FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23635987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Armentano, M.G.</creatorcontrib><creatorcontrib>Padra, C.</creatorcontrib><creatorcontrib>Rodríguez, R.</creatorcontrib><creatorcontrib>Scheble, M.</creatorcontrib><title>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.</description><subject>A posteriori error estimates</subject><subject>Computation</subject><subject>Convergence</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Fluid–structure interaction</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>hp Version</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Spectral approximation</subject><subject>Structural and continuum mechanics</subject><subject>Vibration problem</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEQx0VoIa7bB8hNl5DTOvrYD5meQkjSgCGX5FYQs9oRltGutpJsyC3v0Dfsk0TGocfMYYYZfvMf5k_IBWcrznh7vVuZEVaClZ6pFWPyjCy46taV4FJ9IQvG6qbqlGjOybeUdqyE4mJBft9MdDtT6yaXkaLHEadMYYA5uwPSZLZlQnOgKfjS5y3SDcweDNIxDOipDZFav3fDv7e_hXEDPbg-QnZhSt_JVws-4Y-PuiQv93fPt7-qzdPD4-3NpjI1E7myQgphaws9KlTrBoHJToEZZF_uIG9Z13FmsRG2E4UUYG0LvephXaKWckmuTrpzDH_2mLIeXTLoPUwY9kmrtpZFt-Ql4SfSxJBSRKvn6EaIr5ozfTRS73QxUh-N1EzpYmTZufxQh2TA2wiTcen_opCtbNaqK9zPE4fl1YPDqJNxOBkcXEST9RDcJ1feAZsFiiY</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Armentano, M.G.</creator><creator>Padra, C.</creator><creator>Rodríguez, R.</creator><creator>Scheble, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</title><author>Armentano, M.G. ; Padra, C. ; Rodríguez, R. ; Scheble, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A posteriori error estimates</topic><topic>Computation</topic><topic>Convergence</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Fluid–structure interaction</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>hp Version</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Spectral approximation</topic><topic>Structural and continuum mechanics</topic><topic>Vibration problem</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armentano, M.G.</creatorcontrib><creatorcontrib>Padra, C.</creatorcontrib><creatorcontrib>Rodríguez, R.</creatorcontrib><creatorcontrib>Scheble, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armentano, M.G.</au><au>Padra, C.</au><au>Rodríguez, R.</au><au>Scheble, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2011</date><risdate>2011</risdate><volume>200</volume><issue>1-4</issue><spage>178</spage><epage>188</epage><pages>178-188</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2010.08.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2011, Vol.200 (1-4), p.178-188
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_864389564
source ScienceDirect Freedom Collection 2022-2024
subjects A posteriori error estimates
Computation
Convergence
Errors
Estimates
Estimators
Exact sciences and technology
Finite element method
Finite elements
Fluid–structure interaction
Fundamental areas of phenomenology (including applications)
hp Version
Mathematical analysis
Mathematical models
Physics
Solid mechanics
Spectral approximation
Structural and continuum mechanics
Vibration problem
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20hp%20finite%20element%20adaptive%20scheme%20to%20solve%20the%20Laplace%20model%20for%20fluid%E2%80%93solid%20vibrations&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Armentano,%20M.G.&rft.date=2011&rft.volume=200&rft.issue=1-4&rft.spage=178&rft.epage=188&rft.pages=178-188&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2010.08.003&rft_dat=%3Cproquest_cross%3E864389564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-f2322f4fabe8e895ea0378acd3bacee1607710fe52f7222f2aff6ab8ba9999433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864389564&rft_id=info:pmid/&rfr_iscdi=true