Loading…
Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm
Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges s...
Saved in:
Published in: | Journal of computational physics 2010-12, Vol.229 (24), p.9201-9215 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153 |
container_end_page | 9215 |
container_issue | 24 |
container_start_page | 9201 |
container_title | Journal of computational physics |
container_volume | 229 |
creator | Lucas, Peter van Zuijlen, Alexander H. Bijl, Hester |
description | Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method.
In previous work we showed that a Jacobian-free Newton–Krylov (
jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations.
The goal of this paper is to demonstrate that the
jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved. |
doi_str_mv | 10.1016/j.jcp.2010.08.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864393929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110004808</els_id><sourcerecordid>864393929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEiFwALptENUu43XWa4sKRYSnoIHaMs4YHG3WwXYSpeMO3JCTYBRESTUa6fvn8RFyTKGiQPnZrJqZRVVD7kFUwNgOGVCQUNYt5btkAFDTUkpJ98lBjDMAEM1IDMjDRMdULPuYUE83he38ujB-vlgmnZzvY7F26a3Qxa02_sXpvrQBsXjAdfL918fnXdh0flXo7tWHDM4PyZ7VXcSj3zokz5PLp_F1ef94dTO-uC8Na2QqG8tGgpl8lADLa26nSIXQDEGiQSY5Ct00jDFppTCMt1yMGmstBRStpQ0bktPt3EXw70uMSc1dNNh1uke_jErwEZNM1jKTdEua4GMMaNUiuLkOG0VB_ahTM5XVqR91CoTK6nLm5He6jkZ3NujeuPgXrBlrWt7SzJ1vOcyvrhwGFY3D3uDUBTRJTb37Z8s398mEdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864393929</pqid></control><display><type>article</type><title>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</title><source>ScienceDirect Journals</source><creator>Lucas, Peter ; van Zuijlen, Alexander H. ; Bijl, Hester</creator><creatorcontrib>Lucas, Peter ; van Zuijlen, Alexander H. ; Bijl, Hester</creatorcontrib><description>Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method.
In previous work we showed that a Jacobian-free Newton–Krylov (
jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations.
The goal of this paper is to demonstrate that the
jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.08.033</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Algorithms ; Computational fluid dynamics ; Computational techniques ; Exact sciences and technology ; Fluid flow ; Higher order implicit time integration ; Jacobian-free Newton–Krylov ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Physics ; Reynolds number ; Stiffness due to various flow and grid parameters ; Turbulence ; Turbulent flow ; Unsteady flow</subject><ispartof>Journal of computational physics, 2010-12, Vol.229 (24), p.9201-9215</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</citedby><cites>FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23357671$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Peter</creatorcontrib><creatorcontrib>van Zuijlen, Alexander H.</creatorcontrib><creatorcontrib>Bijl, Hester</creatorcontrib><title>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</title><title>Journal of computational physics</title><description>Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method.
In previous work we showed that a Jacobian-free Newton–Krylov (
jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations.
The goal of this paper is to demonstrate that the
jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.</description><subject>Algorithms</subject><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Higher order implicit time integration</subject><subject>Jacobian-free Newton–Krylov</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Stiffness due to various flow and grid parameters</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Unsteady flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEiFwALptENUu43XWa4sKRYSnoIHaMs4YHG3WwXYSpeMO3JCTYBRESTUa6fvn8RFyTKGiQPnZrJqZRVVD7kFUwNgOGVCQUNYt5btkAFDTUkpJ98lBjDMAEM1IDMjDRMdULPuYUE83he38ujB-vlgmnZzvY7F26a3Qxa02_sXpvrQBsXjAdfL918fnXdh0flXo7tWHDM4PyZ7VXcSj3zokz5PLp_F1ef94dTO-uC8Na2QqG8tGgpl8lADLa26nSIXQDEGiQSY5Ct00jDFppTCMt1yMGmstBRStpQ0bktPt3EXw70uMSc1dNNh1uke_jErwEZNM1jKTdEua4GMMaNUiuLkOG0VB_ahTM5XVqR91CoTK6nLm5He6jkZ3NujeuPgXrBlrWt7SzJ1vOcyvrhwGFY3D3uDUBTRJTb37Z8s398mEdA</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Lucas, Peter</creator><creator>van Zuijlen, Alexander H.</creator><creator>Bijl, Hester</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101210</creationdate><title>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</title><author>Lucas, Peter ; van Zuijlen, Alexander H. ; Bijl, Hester</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Higher order implicit time integration</topic><topic>Jacobian-free Newton–Krylov</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Stiffness due to various flow and grid parameters</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Peter</creatorcontrib><creatorcontrib>van Zuijlen, Alexander H.</creatorcontrib><creatorcontrib>Bijl, Hester</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Peter</au><au>van Zuijlen, Alexander H.</au><au>Bijl, Hester</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</atitle><jtitle>Journal of computational physics</jtitle><date>2010-12-10</date><risdate>2010</risdate><volume>229</volume><issue>24</issue><spage>9201</spage><epage>9215</epage><pages>9201-9215</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method.
In previous work we showed that a Jacobian-free Newton–Krylov (
jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations.
The goal of this paper is to demonstrate that the
jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.08.033</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2010-12, Vol.229 (24), p.9201-9215 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_864393929 |
source | ScienceDirect Journals |
subjects | Algorithms Computational fluid dynamics Computational techniques Exact sciences and technology Fluid flow Higher order implicit time integration Jacobian-free Newton–Krylov Mathematical methods in physics Mathematical models Nonlinearity Physics Reynolds number Stiffness due to various flow and grid parameters Turbulence Turbulent flow Unsteady flow |
title | Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20unsteady%20flow%20computations%20with%20a%20Jacobian-free%20Newton%E2%80%93Krylov%20algorithm&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lucas,%20Peter&rft.date=2010-12-10&rft.volume=229&rft.issue=24&rft.spage=9201&rft.epage=9215&rft.pages=9201-9215&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.08.033&rft_dat=%3Cproquest_cross%3E864393929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864393929&rft_id=info:pmid/&rfr_iscdi=true |