Loading…

Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm

Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2010-12, Vol.229 (24), p.9201-9215
Main Authors: Lucas, Peter, van Zuijlen, Alexander H., Bijl, Hester
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153
cites cdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153
container_end_page 9215
container_issue 24
container_start_page 9201
container_title Journal of computational physics
container_volume 229
creator Lucas, Peter
van Zuijlen, Alexander H.
Bijl, Hester
description Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method. In previous work we showed that a Jacobian-free Newton–Krylov ( jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations. The goal of this paper is to demonstrate that the jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.
doi_str_mv 10.1016/j.jcp.2010.08.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864393929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110004808</els_id><sourcerecordid>864393929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEiFwALptENUu43XWa4sKRYSnoIHaMs4YHG3WwXYSpeMO3JCTYBRESTUa6fvn8RFyTKGiQPnZrJqZRVVD7kFUwNgOGVCQUNYt5btkAFDTUkpJ98lBjDMAEM1IDMjDRMdULPuYUE83he38ujB-vlgmnZzvY7F26a3Qxa02_sXpvrQBsXjAdfL918fnXdh0flXo7tWHDM4PyZ7VXcSj3zokz5PLp_F1ef94dTO-uC8Na2QqG8tGgpl8lADLa26nSIXQDEGiQSY5Ct00jDFppTCMt1yMGmstBRStpQ0bktPt3EXw70uMSc1dNNh1uke_jErwEZNM1jKTdEua4GMMaNUiuLkOG0VB_ahTM5XVqR91CoTK6nLm5He6jkZ3NujeuPgXrBlrWt7SzJ1vOcyvrhwGFY3D3uDUBTRJTb37Z8s398mEdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864393929</pqid></control><display><type>article</type><title>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</title><source>ScienceDirect Journals</source><creator>Lucas, Peter ; van Zuijlen, Alexander H. ; Bijl, Hester</creator><creatorcontrib>Lucas, Peter ; van Zuijlen, Alexander H. ; Bijl, Hester</creatorcontrib><description>Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method. In previous work we showed that a Jacobian-free Newton–Krylov ( jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations. The goal of this paper is to demonstrate that the jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.08.033</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Algorithms ; Computational fluid dynamics ; Computational techniques ; Exact sciences and technology ; Fluid flow ; Higher order implicit time integration ; Jacobian-free Newton–Krylov ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Physics ; Reynolds number ; Stiffness due to various flow and grid parameters ; Turbulence ; Turbulent flow ; Unsteady flow</subject><ispartof>Journal of computational physics, 2010-12, Vol.229 (24), p.9201-9215</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</citedby><cites>FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23357671$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Peter</creatorcontrib><creatorcontrib>van Zuijlen, Alexander H.</creatorcontrib><creatorcontrib>Bijl, Hester</creatorcontrib><title>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</title><title>Journal of computational physics</title><description>Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method. In previous work we showed that a Jacobian-free Newton–Krylov ( jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations. The goal of this paper is to demonstrate that the jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.</description><subject>Algorithms</subject><subject>Computational fluid dynamics</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Higher order implicit time integration</subject><subject>Jacobian-free Newton–Krylov</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Stiffness due to various flow and grid parameters</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Unsteady flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEiFwALptENUu43XWa4sKRYSnoIHaMs4YHG3WwXYSpeMO3JCTYBRESTUa6fvn8RFyTKGiQPnZrJqZRVVD7kFUwNgOGVCQUNYt5btkAFDTUkpJ98lBjDMAEM1IDMjDRMdULPuYUE83he38ujB-vlgmnZzvY7F26a3Qxa02_sXpvrQBsXjAdfL918fnXdh0flXo7tWHDM4PyZ7VXcSj3zokz5PLp_F1ef94dTO-uC8Na2QqG8tGgpl8lADLa26nSIXQDEGiQSY5Ct00jDFppTCMt1yMGmstBRStpQ0bktPt3EXw70uMSc1dNNh1uke_jErwEZNM1jKTdEua4GMMaNUiuLkOG0VB_ahTM5XVqR91CoTK6nLm5He6jkZ3NujeuPgXrBlrWt7SzJ1vOcyvrhwGFY3D3uDUBTRJTb37Z8s398mEdA</recordid><startdate>20101210</startdate><enddate>20101210</enddate><creator>Lucas, Peter</creator><creator>van Zuijlen, Alexander H.</creator><creator>Bijl, Hester</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101210</creationdate><title>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</title><author>Lucas, Peter ; van Zuijlen, Alexander H. ; Bijl, Hester</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computational fluid dynamics</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Higher order implicit time integration</topic><topic>Jacobian-free Newton–Krylov</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Stiffness due to various flow and grid parameters</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Peter</creatorcontrib><creatorcontrib>van Zuijlen, Alexander H.</creatorcontrib><creatorcontrib>Bijl, Hester</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Peter</au><au>van Zuijlen, Alexander H.</au><au>Bijl, Hester</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm</atitle><jtitle>Journal of computational physics</jtitle><date>2010-12-10</date><risdate>2010</risdate><volume>229</volume><issue>24</issue><spage>9201</spage><epage>9215</epage><pages>9201-9215</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for large Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the large aspect ratio cells and turbulence is not tackled well by this solution method. In previous work we showed that a Jacobian-free Newton–Krylov ( jfnk) algorithm, preconditioned with an approximate factorization of the Jacobian that approximately matches the target residual operator, enables a speed up of a factor of 10 compared to standard nonlinear multigrid for two-dimensional, large Reynolds number, unsteady flow computations. The goal of this paper is to demonstrate that the jfnk algorithm is also suited to tackle the stiffness induced by the maximum aspect ratio, the grid density, the physical time step and the Reynolds number. Compared to standard nonlinear multigrid, speed ups up to a factor of 25 are achieved.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.08.033</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2010-12, Vol.229 (24), p.9201-9215
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_864393929
source ScienceDirect Journals
subjects Algorithms
Computational fluid dynamics
Computational techniques
Exact sciences and technology
Fluid flow
Higher order implicit time integration
Jacobian-free Newton–Krylov
Mathematical methods in physics
Mathematical models
Nonlinearity
Physics
Reynolds number
Stiffness due to various flow and grid parameters
Turbulence
Turbulent flow
Unsteady flow
title Fast unsteady flow computations with a Jacobian-free Newton–Krylov algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20unsteady%20flow%20computations%20with%20a%20Jacobian-free%20Newton%E2%80%93Krylov%20algorithm&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lucas,%20Peter&rft.date=2010-12-10&rft.volume=229&rft.issue=24&rft.spage=9201&rft.epage=9215&rft.pages=9201-9215&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.08.033&rft_dat=%3Cproquest_cross%3E864393929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5f3483c00280f626fde188a3e09ece396e8a553339f98c3676845fff10e87f153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864393929&rft_id=info:pmid/&rfr_iscdi=true