Loading…

Numerical evaluation of arbitrary singular domain integrals based on radial integration method

In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements 2011-03, Vol.35 (3), p.587-593
Main Authors: Gao, Xiao-Wei, Peng, Hai-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23
cites cdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23
container_end_page 593
container_issue 3
container_start_page 587
container_title Engineering analysis with boundary elements
container_volume 35
creator Gao, Xiao-Wei
Peng, Hai-Feng
description In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.
doi_str_mv 10.1016/j.enganabound.2010.06.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864395438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095579971000192X</els_id><sourcerecordid>864395438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI7-h7oQV61Jkz6ylMEXDLpRcGVIk5sxQ5uMSSv47804g7h0deHe75zLOQidE1wQTOqrdQFuJZ3s_OR0UeK0x3WBS3qAZqRtaE5483qIZphXVd5w3hyjkxjXGBOKcT1Db4_TAMEq2WfwKftJjta7zJtMhs6OQYavLFq3mnoZMu0HaV1m3QirIPuYdTKCzhIfpLbJYX_5sRhgfPf6FB2ZRMLZfs7Ry-3N8-I-Xz7dPSyul7lijI9522pFFdNKs5oYxgh0FZQlM22D06aTtDSm44yqpoS6aYnRXRoqRSBJWtI5utz5boL_mCCOYrBRQd9LB36Koq0Z5RWjbSL5jlTBxxjAiE2wQ8opCBbbSsVa_KlUbCsVuBap0qS92H-RMTVmgnTKxl-DkraEJzxxix0HKfKnhSCisuAUaBtAjUJ7-49v34lMlH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864395438</pqid></control><display><type>article</type><title>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gao, Xiao-Wei ; Peng, Hai-Feng</creator><creatorcontrib>Gao, Xiao-Wei ; Peng, Hai-Feng</creatorcontrib><description>In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2010.06.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Boundaries ; Boundary element method ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Global distance ; Integral transforms, operational calculus ; Integrals ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; Polynomials ; Radial integration ; Robustness ; Sciences and techniques of general use ; Singular domain integrals ; Singularities ; Transformations</subject><ispartof>Engineering analysis with boundary elements, 2011-03, Vol.35 (3), p.587-593</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</citedby><cites>FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23819010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xiao-Wei</creatorcontrib><creatorcontrib>Peng, Hai-Feng</creatorcontrib><title>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</title><title>Engineering analysis with boundary elements</title><description>In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.</description><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Global distance</subject><subject>Integral transforms, operational calculus</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Radial integration</subject><subject>Robustness</subject><subject>Sciences and techniques of general use</subject><subject>Singular domain integrals</subject><subject>Singularities</subject><subject>Transformations</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOI7-h7oQV61Jkz6ylMEXDLpRcGVIk5sxQ5uMSSv47804g7h0deHe75zLOQidE1wQTOqrdQFuJZ3s_OR0UeK0x3WBS3qAZqRtaE5483qIZphXVd5w3hyjkxjXGBOKcT1Db4_TAMEq2WfwKftJjta7zJtMhs6OQYavLFq3mnoZMu0HaV1m3QirIPuYdTKCzhIfpLbJYX_5sRhgfPf6FB2ZRMLZfs7Ry-3N8-I-Xz7dPSyul7lijI9522pFFdNKs5oYxgh0FZQlM22D06aTtDSm44yqpoS6aYnRXRoqRSBJWtI5utz5boL_mCCOYrBRQd9LB36Koq0Z5RWjbSL5jlTBxxjAiE2wQ8opCBbbSsVa_KlUbCsVuBap0qS92H-RMTVmgnTKxl-DkraEJzxxix0HKfKnhSCisuAUaBtAjUJ7-49v34lMlH4</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Gao, Xiao-Wei</creator><creator>Peng, Hai-Feng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</title><author>Gao, Xiao-Wei ; Peng, Hai-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Global distance</topic><topic>Integral transforms, operational calculus</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Radial integration</topic><topic>Robustness</topic><topic>Sciences and techniques of general use</topic><topic>Singular domain integrals</topic><topic>Singularities</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiao-Wei</creatorcontrib><creatorcontrib>Peng, Hai-Feng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xiao-Wei</au><au>Peng, Hai-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>35</volume><issue>3</issue><spage>587</spage><epage>593</epage><pages>587-593</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2010.06.023</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2011-03, Vol.35 (3), p.587-593
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_864395438
source ScienceDirect Freedom Collection 2022-2024
subjects Boundaries
Boundary element method
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Global distance
Integral transforms, operational calculus
Integrals
Mathematical analysis
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis. Scientific computation
Physics
Polynomials
Radial integration
Robustness
Sciences and techniques of general use
Singular domain integrals
Singularities
Transformations
title Numerical evaluation of arbitrary singular domain integrals based on radial integration method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20evaluation%20of%20arbitrary%20singular%20domain%20integrals%20based%20on%20radial%20integration%20method&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Gao,%20Xiao-Wei&rft.date=2011-03-01&rft.volume=35&rft.issue=3&rft.spage=587&rft.epage=593&rft.pages=587-593&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2010.06.023&rft_dat=%3Cproquest_cross%3E864395438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864395438&rft_id=info:pmid/&rfr_iscdi=true