Loading…
Numerical evaluation of arbitrary singular domain integrals based on radial integration method
In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the...
Saved in:
Published in: | Engineering analysis with boundary elements 2011-03, Vol.35 (3), p.587-593 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23 |
container_end_page | 593 |
container_issue | 3 |
container_start_page | 587 |
container_title | Engineering analysis with boundary elements |
container_volume | 35 |
creator | Gao, Xiao-Wei Peng, Hai-Feng |
description | In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance
r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method. |
doi_str_mv | 10.1016/j.enganabound.2010.06.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864395438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095579971000192X</els_id><sourcerecordid>864395438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI7-h7oQV61Jkz6ylMEXDLpRcGVIk5sxQ5uMSSv47804g7h0deHe75zLOQidE1wQTOqrdQFuJZ3s_OR0UeK0x3WBS3qAZqRtaE5483qIZphXVd5w3hyjkxjXGBOKcT1Db4_TAMEq2WfwKftJjta7zJtMhs6OQYavLFq3mnoZMu0HaV1m3QirIPuYdTKCzhIfpLbJYX_5sRhgfPf6FB2ZRMLZfs7Ry-3N8-I-Xz7dPSyul7lijI9522pFFdNKs5oYxgh0FZQlM22D06aTtDSm44yqpoS6aYnRXRoqRSBJWtI5utz5boL_mCCOYrBRQd9LB36Koq0Z5RWjbSL5jlTBxxjAiE2wQ8opCBbbSsVa_KlUbCsVuBap0qS92H-RMTVmgnTKxl-DkraEJzxxix0HKfKnhSCisuAUaBtAjUJ7-49v34lMlH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864395438</pqid></control><display><type>article</type><title>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gao, Xiao-Wei ; Peng, Hai-Feng</creator><creatorcontrib>Gao, Xiao-Wei ; Peng, Hai-Feng</creatorcontrib><description>In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance
r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2010.06.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Boundaries ; Boundary element method ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Global distance ; Integral transforms, operational calculus ; Integrals ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis. Scientific computation ; Physics ; Polynomials ; Radial integration ; Robustness ; Sciences and techniques of general use ; Singular domain integrals ; Singularities ; Transformations</subject><ispartof>Engineering analysis with boundary elements, 2011-03, Vol.35 (3), p.587-593</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</citedby><cites>FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xiao-Wei</creatorcontrib><creatorcontrib>Peng, Hai-Feng</creatorcontrib><title>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</title><title>Engineering analysis with boundary elements</title><description>In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance
r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.</description><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Global distance</subject><subject>Integral transforms, operational calculus</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Radial integration</subject><subject>Robustness</subject><subject>Sciences and techniques of general use</subject><subject>Singular domain integrals</subject><subject>Singularities</subject><subject>Transformations</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOI7-h7oQV61Jkz6ylMEXDLpRcGVIk5sxQ5uMSSv47804g7h0deHe75zLOQidE1wQTOqrdQFuJZ3s_OR0UeK0x3WBS3qAZqRtaE5483qIZphXVd5w3hyjkxjXGBOKcT1Db4_TAMEq2WfwKftJjta7zJtMhs6OQYavLFq3mnoZMu0HaV1m3QirIPuYdTKCzhIfpLbJYX_5sRhgfPf6FB2ZRMLZfs7Ry-3N8-I-Xz7dPSyul7lijI9522pFFdNKs5oYxgh0FZQlM22D06aTtDSm44yqpoS6aYnRXRoqRSBJWtI5utz5boL_mCCOYrBRQd9LB36Koq0Z5RWjbSL5jlTBxxjAiE2wQ8opCBbbSsVa_KlUbCsVuBap0qS92H-RMTVmgnTKxl-DkraEJzxxix0HKfKnhSCisuAUaBtAjUJ7-49v34lMlH4</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Gao, Xiao-Wei</creator><creator>Peng, Hai-Feng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</title><author>Gao, Xiao-Wei ; Peng, Hai-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Global distance</topic><topic>Integral transforms, operational calculus</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Radial integration</topic><topic>Robustness</topic><topic>Sciences and techniques of general use</topic><topic>Singular domain integrals</topic><topic>Singularities</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiao-Wei</creatorcontrib><creatorcontrib>Peng, Hai-Feng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xiao-Wei</au><au>Peng, Hai-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical evaluation of arbitrary singular domain integrals based on radial integration method</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>35</volume><issue>3</issue><spage>587</spage><epage>593</epage><pages>587-593</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>In this paper, a new approach is presented for the numerical evaluation of arbitrary singular domain integrals based on the radial integration method. The transformation from domain integrals to boundary integrals and the analytical elimination of singularities can be accomplished by expressing the non-singular part of the integration kernels as polynomials of the distance
r and using the intrinsic features of the radial integral. In the proposed method, singularities involved in the domain integrals are explicitly transformed to the boundary integrals, so no singularities exist at internal points. Some numerical examples are provided to verify the correctness and robustness of the presented method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2010.06.023</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2011-03, Vol.35 (3), p.587-593 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_864395438 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Boundaries Boundary element method Exact sciences and technology Fundamental areas of phenomenology (including applications) Global distance Integral transforms, operational calculus Integrals Mathematical analysis Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis. Scientific computation Physics Polynomials Radial integration Robustness Sciences and techniques of general use Singular domain integrals Singularities Transformations |
title | Numerical evaluation of arbitrary singular domain integrals based on radial integration method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20evaluation%20of%20arbitrary%20singular%20domain%20integrals%20based%20on%20radial%20integration%20method&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Gao,%20Xiao-Wei&rft.date=2011-03-01&rft.volume=35&rft.issue=3&rft.spage=587&rft.epage=593&rft.pages=587-593&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2010.06.023&rft_dat=%3Cproquest_cross%3E864395438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-88dc3c4dcd461f441eb5e224f870461ba32ffb943c72e6781fdb678c00618dc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864395438&rft_id=info:pmid/&rfr_iscdi=true |