Loading…
Classification of Cardiac Arrhythmia Based on Hybrid System
This paper, describes an Intelligent Diagnosis System using Hybrid approach of Adaptive Neuro-Fuzzy Inference System (ANFIS) model for classification of Electrocardiogram (ECG) signals, and comparison this Technique with Feed-Forward Neural Network (FFNN), and Fuzzy Inference Systems (FIS). Feature...
Saved in:
Published in: | International journal of computer applications 2010-01, Vol.2 (4), p.18-23 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper, describes an Intelligent Diagnosis System using Hybrid approach of Adaptive Neuro-Fuzzy Inference System (ANFIS) model for classification of Electrocardiogram (ECG) signals, and comparison this Technique with Feed-Forward Neural Network (FFNN), and Fuzzy Inference Systems (FIS). Feature extraction using Independent Component Analysis (ICA) and power spectrum, together with the RR interval then serve as input feature vector, this feature were used as input of FFNN, FIS, and ANFIS classifiers. six types of ECG signals they are Normal Sinus Rhythm (NSR), Premature Ventricular Contraction (PVC), Atrial Premature Contraction (APC), Ventricular Tachycardia(VT), Ventricular Fibrillation (VF) and Supraventricular Tachycardia (SVT). The results indicate a high level of efficient, the proposed method outperforms the other methods with an impressive accuracy of 97.1%, As for other methods FFNN, FIS results were respectively 94.3%, 95.7%. |
---|---|
ISSN: | 0975-8887 0975-8887 |
DOI: | 10.5120/659-926 |