Loading…
Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey
The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers pr...
Saved in:
Published in: | International journal of computer applications 2010-01, Vol.6 (5), p.1-9 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3 |
---|---|
cites | |
container_end_page | 9 |
container_issue | 5 |
container_start_page | 1 |
container_title | International journal of computer applications |
container_volume | 6 |
creator | Kumar, Dinesh Josan, Gurpreet Singh |
description | The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper. |
doi_str_mv | 10.5120/1078-1409 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864403686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200832111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4MoOHQH_4PgRTxUkzZJX7yN4Y_JRHHzHNI07Tq6piarsP_ejHkQL77D930PHx48PghdUHLDaUpuKckhoYzIIzQiMucJAOTHv_opGoewJnEymQrJRuj5TfstdhVe9NaaFV7qurY-4Mp5_OJ8v3Ktqxuj23aH35sIzLqy0R2e664edG3DHZ7gxeC_7O4cnVS6DXb8s8_Qx8P9cvqUzF8fZ9PJPDEpITIpgKc0LQBisDK1OTeaZCUIQk1ZUJ0zkIYYBobzkkMZa1kUghdWCMtym52hq8Pd3rvPwYat2jTB2LbVnXVDUCAYI5kA8T-ZUcoJUBLJyz_k2g2-i28ooAxoLiWL0PUBMt6F4G2let9stN8pStRegNoLUHsB2Tdc2nTt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814817994</pqid></control><display><type>article</type><title>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</title><source>Freely Accessible Journals</source><creator>Kumar, Dinesh ; Josan, Gurpreet Singh</creator><creatorcontrib>Kumar, Dinesh ; Josan, Gurpreet Singh</creatorcontrib><description>The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/1078-1409</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Accuracy ; Indian ; Marking ; Mathematical models ; Maximum entropy ; Natural language processing ; Preprocessing ; Rule based ; Speech</subject><ispartof>International journal of computer applications, 2010-01, Vol.6 (5), p.1-9</ispartof><rights>Copyright Foundation of Computer Science 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumar, Dinesh</creatorcontrib><creatorcontrib>Josan, Gurpreet Singh</creatorcontrib><title>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</title><title>International journal of computer applications</title><description>The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.</description><subject>Accuracy</subject><subject>Indian</subject><subject>Marking</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Natural language processing</subject><subject>Preprocessing</subject><subject>Rule based</subject><subject>Speech</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LwzAUx4MoOHQH_4PgRTxUkzZJX7yN4Y_JRHHzHNI07Tq6piarsP_ejHkQL77D930PHx48PghdUHLDaUpuKckhoYzIIzQiMucJAOTHv_opGoewJnEymQrJRuj5TfstdhVe9NaaFV7qurY-4Mp5_OJ8v3Ktqxuj23aH35sIzLqy0R2e664edG3DHZ7gxeC_7O4cnVS6DXb8s8_Qx8P9cvqUzF8fZ9PJPDEpITIpgKc0LQBisDK1OTeaZCUIQk1ZUJ0zkIYYBobzkkMZa1kUghdWCMtym52hq8Pd3rvPwYat2jTB2LbVnXVDUCAYI5kA8T-ZUcoJUBLJyz_k2g2-i28ooAxoLiWL0PUBMt6F4G2let9stN8pStRegNoLUHsB2Tdc2nTt</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Kumar, Dinesh</creator><creator>Josan, Gurpreet Singh</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</title><author>Kumar, Dinesh ; Josan, Gurpreet Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Indian</topic><topic>Marking</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Natural language processing</topic><topic>Preprocessing</topic><topic>Rule based</topic><topic>Speech</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Dinesh</creatorcontrib><creatorcontrib>Josan, Gurpreet Singh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Dinesh</au><au>Josan, Gurpreet Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</atitle><jtitle>International journal of computer applications</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>6</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/1078-1409</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2010-01, Vol.6 (5), p.1-9 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_864403686 |
source | Freely Accessible Journals |
subjects | Accuracy Indian Marking Mathematical models Maximum entropy Natural language processing Preprocessing Rule based Speech |
title | Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Part%20of%20Speech%20Taggers%20for%20Morphologically%20Rich%20Indian%20Languages:%20A%20Survey&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Kumar,%20Dinesh&rft.date=2010-01-01&rft.volume=6&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/1078-1409&rft_dat=%3Cproquest_cross%3E2200832111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=814817994&rft_id=info:pmid/&rfr_iscdi=true |