Loading…

Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey

The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers pr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2010-01, Vol.6 (5), p.1-9
Main Authors: Kumar, Dinesh, Josan, Gurpreet Singh
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3
cites
container_end_page 9
container_issue 5
container_start_page 1
container_title International journal of computer applications
container_volume 6
creator Kumar, Dinesh
Josan, Gurpreet Singh
description The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.
doi_str_mv 10.5120/1078-1409
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864403686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200832111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4MoOHQH_4PgRTxUkzZJX7yN4Y_JRHHzHNI07Tq6piarsP_ejHkQL77D930PHx48PghdUHLDaUpuKckhoYzIIzQiMucJAOTHv_opGoewJnEymQrJRuj5TfstdhVe9NaaFV7qurY-4Mp5_OJ8v3Ktqxuj23aH35sIzLqy0R2e664edG3DHZ7gxeC_7O4cnVS6DXb8s8_Qx8P9cvqUzF8fZ9PJPDEpITIpgKc0LQBisDK1OTeaZCUIQk1ZUJ0zkIYYBobzkkMZa1kUghdWCMtym52hq8Pd3rvPwYat2jTB2LbVnXVDUCAYI5kA8T-ZUcoJUBLJyz_k2g2-i28ooAxoLiWL0PUBMt6F4G2let9stN8pStRegNoLUHsB2Tdc2nTt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814817994</pqid></control><display><type>article</type><title>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</title><source>Freely Accessible Journals</source><creator>Kumar, Dinesh ; Josan, Gurpreet Singh</creator><creatorcontrib>Kumar, Dinesh ; Josan, Gurpreet Singh</creatorcontrib><description>The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/1078-1409</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Accuracy ; Indian ; Marking ; Mathematical models ; Maximum entropy ; Natural language processing ; Preprocessing ; Rule based ; Speech</subject><ispartof>International journal of computer applications, 2010-01, Vol.6 (5), p.1-9</ispartof><rights>Copyright Foundation of Computer Science 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumar, Dinesh</creatorcontrib><creatorcontrib>Josan, Gurpreet Singh</creatorcontrib><title>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</title><title>International journal of computer applications</title><description>The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.</description><subject>Accuracy</subject><subject>Indian</subject><subject>Marking</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Natural language processing</subject><subject>Preprocessing</subject><subject>Rule based</subject><subject>Speech</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LwzAUx4MoOHQH_4PgRTxUkzZJX7yN4Y_JRHHzHNI07Tq6piarsP_ejHkQL77D930PHx48PghdUHLDaUpuKckhoYzIIzQiMucJAOTHv_opGoewJnEymQrJRuj5TfstdhVe9NaaFV7qurY-4Mp5_OJ8v3Ktqxuj23aH35sIzLqy0R2e664edG3DHZ7gxeC_7O4cnVS6DXb8s8_Qx8P9cvqUzF8fZ9PJPDEpITIpgKc0LQBisDK1OTeaZCUIQk1ZUJ0zkIYYBobzkkMZa1kUghdWCMtym52hq8Pd3rvPwYat2jTB2LbVnXVDUCAYI5kA8T-ZUcoJUBLJyz_k2g2-i28ooAxoLiWL0PUBMt6F4G2let9stN8pStRegNoLUHsB2Tdc2nTt</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Kumar, Dinesh</creator><creator>Josan, Gurpreet Singh</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</title><author>Kumar, Dinesh ; Josan, Gurpreet Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Indian</topic><topic>Marking</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Natural language processing</topic><topic>Preprocessing</topic><topic>Rule based</topic><topic>Speech</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Dinesh</creatorcontrib><creatorcontrib>Josan, Gurpreet Singh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Dinesh</au><au>Josan, Gurpreet Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey</atitle><jtitle>International journal of computer applications</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>6</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>The problem of tagging in natural language processing is to find a way to tag every word in a text as a particular part of speech, e.g., proper pronoun. POS tagging is a very important preprocessing task for language processing activities. This paper reports about the Part of Speech (POS) taggers proposed for various Indian Languages like Hindi, Punjabi, Malayalam, Bengali and Telugu. Various part of speech tagging approaches like Hidden Markov Model (HMM), Support Vector Model (SVM), Rule based approaches, Maximum Entropy (ME) and Conditional Random Field (CRF) have been used for POS tagging. Accuracy is the prime factor in evaluating any POS tagger so the accuracy of every proposed tagger is also discussed in this paper.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/1078-1409</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2010-01, Vol.6 (5), p.1-9
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_864403686
source Freely Accessible Journals
subjects Accuracy
Indian
Marking
Mathematical models
Maximum entropy
Natural language processing
Preprocessing
Rule based
Speech
title Part of Speech Taggers for Morphologically Rich Indian Languages: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Part%20of%20Speech%20Taggers%20for%20Morphologically%20Rich%20Indian%20Languages:%20A%20Survey&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Kumar,%20Dinesh&rft.date=2010-01-01&rft.volume=6&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/1078-1409&rft_dat=%3Cproquest_cross%3E2200832111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2009-b85212b8812b4d2e75ca03d8601cdb1a7489c0c48c55d58d0c4dbb65be66e47e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=814817994&rft_id=info:pmid/&rfr_iscdi=true