Loading…

Turbulent burning velocity predictions using transported PDF methods

The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Combustion Institute 2011, Vol.33 (1), p.1277-1284
Main Authors: Lindstedt, R.P., Milosavljevic, V.D., Persson, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3
cites cdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3
container_end_page 1284
container_issue 1
container_start_page 1277
container_title Proceedings of the Combustion Institute
container_volume 33
creator Lindstedt, R.P.
Milosavljevic, V.D.
Persson, M.
description The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.
doi_str_mv 10.1016/j.proci.2010.05.092
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864404204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748910002154</els_id><sourcerecordid>864404204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1iyMSVcPxKnAwNqKSBVgqHMlmPfgKs0KbZTqf8elzIz3dc5R7ofIbcUCgq0ut8UOz8YVzBIGygLmLEzMqG15DmTIM5TXwrIpahnl-QqhA0Al8DLCVmsR9-MHfYxa0bfu_4z22OXsuIh23m0zkQ39CEbw_EUve7DbvARbfa-WGZbjF-DDdfkotVdwJu_OiUfy6f1_CVfvT2_zh9XueG8jLkALWeNNVAJpKbSGkwta42iBSu1LLkRllUsNZjuQpbUpoG2urGSCdbwKbk75aZvv0cMUW1dMNh1usdhDKquhADBQCQlPymNH0Lw2Kqdd1vtD4qCOiJTG_WLTB2RKShVQpZcDycXpif2Dr0KxmFvEgaPJio7uH_9Pzundrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864404204</pqid></control><display><type>article</type><title>Turbulent burning velocity predictions using transported PDF methods</title><source>ScienceDirect Journals</source><creator>Lindstedt, R.P. ; Milosavljevic, V.D. ; Persson, M.</creator><creatorcontrib>Lindstedt, R.P. ; Milosavljevic, V.D. ; Persson, M.</creatorcontrib><description>The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2010.05.092</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Combustion ; Computational fluid dynamics ; Ethane ; Fuels ; Methane ; Portable document format ; Premixed ; Transported PDF ; Turbulence ; Turbulence intensity ; Turbulent burning velocity</subject><ispartof>Proceedings of the Combustion Institute, 2011, Vol.33 (1), p.1277-1284</ispartof><rights>2010 The Combustion Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</citedby><cites>FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Lindstedt, R.P.</creatorcontrib><creatorcontrib>Milosavljevic, V.D.</creatorcontrib><creatorcontrib>Persson, M.</creatorcontrib><title>Turbulent burning velocity predictions using transported PDF methods</title><title>Proceedings of the Combustion Institute</title><description>The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.</description><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Ethane</subject><subject>Fuels</subject><subject>Methane</subject><subject>Portable document format</subject><subject>Premixed</subject><subject>Transported PDF</subject><subject>Turbulence</subject><subject>Turbulence intensity</subject><subject>Turbulent burning velocity</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1iyMSVcPxKnAwNqKSBVgqHMlmPfgKs0KbZTqf8elzIz3dc5R7ofIbcUCgq0ut8UOz8YVzBIGygLmLEzMqG15DmTIM5TXwrIpahnl-QqhA0Al8DLCVmsR9-MHfYxa0bfu_4z22OXsuIh23m0zkQ39CEbw_EUve7DbvARbfa-WGZbjF-DDdfkotVdwJu_OiUfy6f1_CVfvT2_zh9XueG8jLkALWeNNVAJpKbSGkwta42iBSu1LLkRllUsNZjuQpbUpoG2urGSCdbwKbk75aZvv0cMUW1dMNh1usdhDKquhADBQCQlPymNH0Lw2Kqdd1vtD4qCOiJTG_WLTB2RKShVQpZcDycXpif2Dr0KxmFvEgaPJio7uH_9Pzundrs</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Lindstedt, R.P.</creator><creator>Milosavljevic, V.D.</creator><creator>Persson, M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Turbulent burning velocity predictions using transported PDF methods</title><author>Lindstedt, R.P. ; Milosavljevic, V.D. ; Persson, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Ethane</topic><topic>Fuels</topic><topic>Methane</topic><topic>Portable document format</topic><topic>Premixed</topic><topic>Transported PDF</topic><topic>Turbulence</topic><topic>Turbulence intensity</topic><topic>Turbulent burning velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindstedt, R.P.</creatorcontrib><creatorcontrib>Milosavljevic, V.D.</creatorcontrib><creatorcontrib>Persson, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindstedt, R.P.</au><au>Milosavljevic, V.D.</au><au>Persson, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent burning velocity predictions using transported PDF methods</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2011</date><risdate>2011</risdate><volume>33</volume><issue>1</issue><spage>1277</spage><epage>1284</epage><pages>1277-1284</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2010.05.092</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2011, Vol.33 (1), p.1277-1284
issn 1540-7489
1873-2704
language eng
recordid cdi_proquest_miscellaneous_864404204
source ScienceDirect Journals
subjects Combustion
Computational fluid dynamics
Ethane
Fuels
Methane
Portable document format
Premixed
Transported PDF
Turbulence
Turbulence intensity
Turbulent burning velocity
title Turbulent burning velocity predictions using transported PDF methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20burning%20velocity%20predictions%20using%20transported%20PDF%20methods&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Lindstedt,%20R.P.&rft.date=2011&rft.volume=33&rft.issue=1&rft.spage=1277&rft.epage=1284&rft.pages=1277-1284&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2010.05.092&rft_dat=%3Cproquest_cross%3E864404204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864404204&rft_id=info:pmid/&rfr_iscdi=true