Loading…
Turbulent burning velocity predictions using transported PDF methods
The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane...
Saved in:
Published in: | Proceedings of the Combustion Institute 2011, Vol.33 (1), p.1277-1284 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3 |
container_end_page | 1284 |
container_issue | 1 |
container_start_page | 1277 |
container_title | Proceedings of the Combustion Institute |
container_volume | 33 |
creator | Lindstedt, R.P. Milosavljevic, V.D. Persson, M. |
description | The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers. |
doi_str_mv | 10.1016/j.proci.2010.05.092 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864404204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748910002154</els_id><sourcerecordid>864404204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1iyMSVcPxKnAwNqKSBVgqHMlmPfgKs0KbZTqf8elzIz3dc5R7ofIbcUCgq0ut8UOz8YVzBIGygLmLEzMqG15DmTIM5TXwrIpahnl-QqhA0Al8DLCVmsR9-MHfYxa0bfu_4z22OXsuIh23m0zkQ39CEbw_EUve7DbvARbfa-WGZbjF-DDdfkotVdwJu_OiUfy6f1_CVfvT2_zh9XueG8jLkALWeNNVAJpKbSGkwta42iBSu1LLkRllUsNZjuQpbUpoG2urGSCdbwKbk75aZvv0cMUW1dMNh1usdhDKquhADBQCQlPymNH0Lw2Kqdd1vtD4qCOiJTG_WLTB2RKShVQpZcDycXpif2Dr0KxmFvEgaPJio7uH_9Pzundrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864404204</pqid></control><display><type>article</type><title>Turbulent burning velocity predictions using transported PDF methods</title><source>ScienceDirect Journals</source><creator>Lindstedt, R.P. ; Milosavljevic, V.D. ; Persson, M.</creator><creatorcontrib>Lindstedt, R.P. ; Milosavljevic, V.D. ; Persson, M.</creatorcontrib><description>The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2010.05.092</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Combustion ; Computational fluid dynamics ; Ethane ; Fuels ; Methane ; Portable document format ; Premixed ; Transported PDF ; Turbulence ; Turbulence intensity ; Turbulent burning velocity</subject><ispartof>Proceedings of the Combustion Institute, 2011, Vol.33 (1), p.1277-1284</ispartof><rights>2010 The Combustion Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</citedby><cites>FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Lindstedt, R.P.</creatorcontrib><creatorcontrib>Milosavljevic, V.D.</creatorcontrib><creatorcontrib>Persson, M.</creatorcontrib><title>Turbulent burning velocity predictions using transported PDF methods</title><title>Proceedings of the Combustion Institute</title><description>The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.</description><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Ethane</subject><subject>Fuels</subject><subject>Methane</subject><subject>Portable document format</subject><subject>Premixed</subject><subject>Transported PDF</subject><subject>Turbulence</subject><subject>Turbulence intensity</subject><subject>Turbulent burning velocity</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1iyMSVcPxKnAwNqKSBVgqHMlmPfgKs0KbZTqf8elzIz3dc5R7ofIbcUCgq0ut8UOz8YVzBIGygLmLEzMqG15DmTIM5TXwrIpahnl-QqhA0Al8DLCVmsR9-MHfYxa0bfu_4z22OXsuIh23m0zkQ39CEbw_EUve7DbvARbfa-WGZbjF-DDdfkotVdwJu_OiUfy6f1_CVfvT2_zh9XueG8jLkALWeNNVAJpKbSGkwta42iBSu1LLkRllUsNZjuQpbUpoG2urGSCdbwKbk75aZvv0cMUW1dMNh1usdhDKquhADBQCQlPymNH0Lw2Kqdd1vtD4qCOiJTG_WLTB2RKShVQpZcDycXpif2Dr0KxmFvEgaPJio7uH_9Pzundrs</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Lindstedt, R.P.</creator><creator>Milosavljevic, V.D.</creator><creator>Persson, M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Turbulent burning velocity predictions using transported PDF methods</title><author>Lindstedt, R.P. ; Milosavljevic, V.D. ; Persson, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Ethane</topic><topic>Fuels</topic><topic>Methane</topic><topic>Portable document format</topic><topic>Premixed</topic><topic>Transported PDF</topic><topic>Turbulence</topic><topic>Turbulence intensity</topic><topic>Turbulent burning velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindstedt, R.P.</creatorcontrib><creatorcontrib>Milosavljevic, V.D.</creatorcontrib><creatorcontrib>Persson, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindstedt, R.P.</au><au>Milosavljevic, V.D.</au><au>Persson, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent burning velocity predictions using transported PDF methods</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2011</date><risdate>2011</risdate><volume>33</volume><issue>1</issue><spage>1277</spage><epage>1284</epage><pages>1277-1284</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>The joint-scalar transported PDF approach is applied to compute freely propagating turbulent premixed flames with burning velocities determined for a range of turbulence intensities and fuel mixtures. The computed cases include rich hydrogen, stoichiometric and lean methane and stoichiometric ethane flames. The aim of the study is to investigate the sensitivity of predictions to different closure elements and to explore the predictive capabilities of the method. The work features extended chemistry closures with a systematically reduced mechanism featuring 142 reactions, 15 solved and 14 steady-state species applied for methane and ethane flames. A detailed sub-mechanism featuring 21 reactions and 9 solved species was used for the hydrogen flames. It is shown that the scaling of turbulent burning velocities with respect to turbulence intensity variations can be significantly improved through the application of an extended multi-scale scalar dissipation rate closure. Furthermore, the impact of molecular transport in physical space is explored through the derivation and inclusion of an explicit correction term applicable at the leading flame edge. It is shown that the impact is modest for fuels such as hydrogen and ethane, but that it can be expected to be significant for fuels with large Zeldovich numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2010.05.092</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7489 |
ispartof | Proceedings of the Combustion Institute, 2011, Vol.33 (1), p.1277-1284 |
issn | 1540-7489 1873-2704 |
language | eng |
recordid | cdi_proquest_miscellaneous_864404204 |
source | ScienceDirect Journals |
subjects | Combustion Computational fluid dynamics Ethane Fuels Methane Portable document format Premixed Transported PDF Turbulence Turbulence intensity Turbulent burning velocity |
title | Turbulent burning velocity predictions using transported PDF methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20burning%20velocity%20predictions%20using%20transported%20PDF%20methods&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Lindstedt,%20R.P.&rft.date=2011&rft.volume=33&rft.issue=1&rft.spage=1277&rft.epage=1284&rft.pages=1277-1284&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2010.05.092&rft_dat=%3Cproquest_cross%3E864404204%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-40a79bdc064e1c6aa0c878ae4f0d7a753c4d262753ee1c4751d2751fabd7242b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864404204&rft_id=info:pmid/&rfr_iscdi=true |