Loading…

Numerical study of magnetic nanoparticles concentration in biofluid (blood) under influence of high gradient magnetic field

Ferrofluids are widely used in pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro-valve applications. The purpose of the current study is to investigate the effect of a magnetic field on the volume concentration of magnetic nanoparticles of a non-Newtonian bi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2011, Vol.323 (1), p.32-38
Main Authors: Reza Habibi, Mohammad, Ghasemi, Majid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ferrofluids are widely used in pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro-valve applications. The purpose of the current study is to investigate the effect of a magnetic field on the volume concentration of magnetic nanoparticles of a non-Newtonian biofluid (blood) as a drug carrier. The effect of particles on the flow field is considered. The governing non-linear differential equations, concentration and Naviar-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. The results show accumulation of magnetic nanoparticles near the magnetic source until it looks like a solid object. The accumulation of nanoparticles is due to the magnetic force that overcomes the fluid drag force. As the magnetic strength and size of the magnetic particles increase, the accumulation of nanoparticles increases, as well. The magnetic susceptibility of particles also affects the flow field and the contour of the concentration considerably.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2010.08.023