Loading…

Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization

This article reviews the synthesis of regular and asymmetric star-branched polymers with well-defined structures by methodologies using living anionic polymerization, especially focusing on the synthetic approaches accessible for precisely controlled architectures of star-branched polymers concernin...

Full description

Saved in:
Bibliographic Details
Published in:Progress in polymer science 2011-03, Vol.36 (3), p.323-375
Main Authors: Higashihara, Tomoya, Hayashi, Mayumi, Hirao, Akira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article reviews the synthesis of regular and asymmetric star-branched polymers with well-defined structures by methodologies using living anionic polymerization, especially focusing on the synthetic approaches accessible for precisely controlled architectures of star-branched polymers concerning molecular weight, molecular weight distribution, arm number, and composition. The reason for selecting living anionic polymerization from many living/controlled polymerization systems so far developed is that this living polymerization system is still the best to meet the strict requirements for the precise structures of star-branched polymers. Furthermore, we herein mainly introduce a novel and quite versatile stepwise iterative methodology recently developed by our group for the successive synthesis of many-armed and multi-compositional asymmetric star-branched polymers. The methodology basically involves only two sets of the reaction conditions for the entire iterative synthetic sequence. The reaction sequence can be, in principle, limitlessly iterated to introduce a definite number of the same or different polymer segments at each stage of the iteration. As a result, a wide variety of many-armed and multi-compositional asymmetric star-branched polymers can be synthesized.
ISSN:0079-6700
1873-1619
DOI:10.1016/j.progpolymsci.2010.08.001