Loading…
Welding defect detection from radiography images with a cepstral approach
This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extrac...
Saved in:
Published in: | NDT & E international : independent nondestructive testing and evaluation 2011-03, Vol.44 (2), p.226-231 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63 |
container_end_page | 231 |
container_issue | 2 |
container_start_page | 226 |
container_title | NDT & E international : independent nondestructive testing and evaluation |
container_volume | 44 |
creator | Kasban, H. Zahran, O. Arafa, H. El-Kordy, M. Elaraby, S.M.S. Abd El-Samie, F.E. |
description | This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring. |
doi_str_mv | 10.1016/j.ndteint.2010.10.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864412785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869510001350</els_id><sourcerecordid>864412785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiNuJqaTCaPWYkUH4WCG8VluM3ctCnTmTGZKv33pra4dXXgcO49nI-Qa0YnjDJ5t5609YC-HSYF_fUmlIoTMmJaVTljqjwlI1pJnmtZiXNyEeOaUlqUXI3I7AOb2rfLrEaHdkgyJPFdm7nQbbIAte-WAfrVLvMbWGLMvv2wyiCz2MchQJNB34cO7OqSnDloIl4ddUzenx7fpi_5_PV5Nn2Y55YrNuSF4-VCgUaJAsBqwa2Siilaca6tqMSiWJRCAqOUi7Kq5MI5LZxSEnSJIPmY3B7-ptrPLcbBbHy02DTQYreNRsuyZIVKj8dEHJI2dDEGdKYPaUTYGUbNnpxZmyM5sye3txO5dHdzbIBooXEBWuvj33HBNU8NLOXuDzlMc788BhOtx9Zi7UOCaOrO_9P0A-4jhoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864412785</pqid></control><display><type>article</type><title>Welding defect detection from radiography images with a cepstral approach</title><source>ScienceDirect Freedom Collection</source><creator>Kasban, H. ; Zahran, O. ; Arafa, H. ; El-Kordy, M. ; Elaraby, S.M.S. ; Abd El-Samie, F.E.</creator><creatorcontrib>Kasban, H. ; Zahran, O. ; Arafa, H. ; El-Kordy, M. ; Elaraby, S.M.S. ; Abd El-Samie, F.E.</creatorcontrib><description>This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2010.10.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Analysing. Testing. Standards ; Applied sciences ; Blurring ; Cross-disciplinary physics: materials science; rheology ; DCT ; Defect detection ; DST ; DWT ; Exact sciences and technology ; Feature extraction ; Materials science ; Materials testing ; Metals. Metallurgy ; MFCCs ; Noise ; Nondestructive testing ; Performance evaluation ; Physics ; Radiography ; Testing for defects ; Transforms ; Weld defects ; Welding</subject><ispartof>NDT & E international : independent nondestructive testing and evaluation, 2011-03, Vol.44 (2), p.226-231</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</citedby><cites>FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23834121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasban, H.</creatorcontrib><creatorcontrib>Zahran, O.</creatorcontrib><creatorcontrib>Arafa, H.</creatorcontrib><creatorcontrib>El-Kordy, M.</creatorcontrib><creatorcontrib>Elaraby, S.M.S.</creatorcontrib><creatorcontrib>Abd El-Samie, F.E.</creatorcontrib><title>Welding defect detection from radiography images with a cepstral approach</title><title>NDT & E international : independent nondestructive testing and evaluation</title><description>This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.</description><subject>Analysing. Testing. Standards</subject><subject>Applied sciences</subject><subject>Blurring</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DCT</subject><subject>Defect detection</subject><subject>DST</subject><subject>DWT</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Metals. Metallurgy</subject><subject>MFCCs</subject><subject>Noise</subject><subject>Nondestructive testing</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Radiography</subject><subject>Testing for defects</subject><subject>Transforms</subject><subject>Weld defects</subject><subject>Welding</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiNuJqaTCaPWYkUH4WCG8VluM3ctCnTmTGZKv33pra4dXXgcO49nI-Qa0YnjDJ5t5609YC-HSYF_fUmlIoTMmJaVTljqjwlI1pJnmtZiXNyEeOaUlqUXI3I7AOb2rfLrEaHdkgyJPFdm7nQbbIAte-WAfrVLvMbWGLMvv2wyiCz2MchQJNB34cO7OqSnDloIl4ddUzenx7fpi_5_PV5Nn2Y55YrNuSF4-VCgUaJAsBqwa2Siilaca6tqMSiWJRCAqOUi7Kq5MI5LZxSEnSJIPmY3B7-ptrPLcbBbHy02DTQYreNRsuyZIVKj8dEHJI2dDEGdKYPaUTYGUbNnpxZmyM5sye3txO5dHdzbIBooXEBWuvj33HBNU8NLOXuDzlMc788BhOtx9Zi7UOCaOrO_9P0A-4jhoI</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Kasban, H.</creator><creator>Zahran, O.</creator><creator>Arafa, H.</creator><creator>El-Kordy, M.</creator><creator>Elaraby, S.M.S.</creator><creator>Abd El-Samie, F.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20110301</creationdate><title>Welding defect detection from radiography images with a cepstral approach</title><author>Kasban, H. ; Zahran, O. ; Arafa, H. ; El-Kordy, M. ; Elaraby, S.M.S. ; Abd El-Samie, F.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysing. Testing. Standards</topic><topic>Applied sciences</topic><topic>Blurring</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DCT</topic><topic>Defect detection</topic><topic>DST</topic><topic>DWT</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Metals. Metallurgy</topic><topic>MFCCs</topic><topic>Noise</topic><topic>Nondestructive testing</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Radiography</topic><topic>Testing for defects</topic><topic>Transforms</topic><topic>Weld defects</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasban, H.</creatorcontrib><creatorcontrib>Zahran, O.</creatorcontrib><creatorcontrib>Arafa, H.</creatorcontrib><creatorcontrib>El-Kordy, M.</creatorcontrib><creatorcontrib>Elaraby, S.M.S.</creatorcontrib><creatorcontrib>Abd El-Samie, F.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasban, H.</au><au>Zahran, O.</au><au>Arafa, H.</au><au>El-Kordy, M.</au><au>Elaraby, S.M.S.</au><au>Abd El-Samie, F.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Welding defect detection from radiography images with a cepstral approach</atitle><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>44</volume><issue>2</issue><spage>226</spage><epage>231</epage><pages>226-231</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2010.10.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-8695 |
ispartof | NDT & E international : independent nondestructive testing and evaluation, 2011-03, Vol.44 (2), p.226-231 |
issn | 0963-8695 1879-1174 |
language | eng |
recordid | cdi_proquest_miscellaneous_864412785 |
source | ScienceDirect Freedom Collection |
subjects | Analysing. Testing. Standards Applied sciences Blurring Cross-disciplinary physics: materials science rheology DCT Defect detection DST DWT Exact sciences and technology Feature extraction Materials science Materials testing Metals. Metallurgy MFCCs Noise Nondestructive testing Performance evaluation Physics Radiography Testing for defects Transforms Weld defects Welding |
title | Welding defect detection from radiography images with a cepstral approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Welding%20defect%20detection%20from%20radiography%20images%20with%20a%20cepstral%20approach&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Kasban,%20H.&rft.date=2011-03-01&rft.volume=44&rft.issue=2&rft.spage=226&rft.epage=231&rft.pages=226-231&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2010.10.005&rft_dat=%3Cproquest_cross%3E864412785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864412785&rft_id=info:pmid/&rfr_iscdi=true |