Loading…

Welding defect detection from radiography images with a cepstral approach

This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extrac...

Full description

Saved in:
Bibliographic Details
Published in:NDT & E international : independent nondestructive testing and evaluation 2011-03, Vol.44 (2), p.226-231
Main Authors: Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S.M.S., Abd El-Samie, F.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63
cites cdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63
container_end_page 231
container_issue 2
container_start_page 226
container_title NDT & E international : independent nondestructive testing and evaluation
container_volume 44
creator Kasban, H.
Zahran, O.
Arafa, H.
El-Kordy, M.
Elaraby, S.M.S.
Abd El-Samie, F.E.
description This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.
doi_str_mv 10.1016/j.ndteint.2010.10.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864412785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869510001350</els_id><sourcerecordid>864412785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QZiNuJqaTCaPWYkUH4WCG8VluM3ctCnTmTGZKv33pra4dXXgcO49nI-Qa0YnjDJ5t5609YC-HSYF_fUmlIoTMmJaVTljqjwlI1pJnmtZiXNyEeOaUlqUXI3I7AOb2rfLrEaHdkgyJPFdm7nQbbIAte-WAfrVLvMbWGLMvv2wyiCz2MchQJNB34cO7OqSnDloIl4ddUzenx7fpi_5_PV5Nn2Y55YrNuSF4-VCgUaJAsBqwa2Siilaca6tqMSiWJRCAqOUi7Kq5MI5LZxSEnSJIPmY3B7-ptrPLcbBbHy02DTQYreNRsuyZIVKj8dEHJI2dDEGdKYPaUTYGUbNnpxZmyM5sye3txO5dHdzbIBooXEBWuvj33HBNU8NLOXuDzlMc788BhOtx9Zi7UOCaOrO_9P0A-4jhoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864412785</pqid></control><display><type>article</type><title>Welding defect detection from radiography images with a cepstral approach</title><source>ScienceDirect Freedom Collection</source><creator>Kasban, H. ; Zahran, O. ; Arafa, H. ; El-Kordy, M. ; Elaraby, S.M.S. ; Abd El-Samie, F.E.</creator><creatorcontrib>Kasban, H. ; Zahran, O. ; Arafa, H. ; El-Kordy, M. ; Elaraby, S.M.S. ; Abd El-Samie, F.E.</creatorcontrib><description>This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2010.10.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Analysing. Testing. Standards ; Applied sciences ; Blurring ; Cross-disciplinary physics: materials science; rheology ; DCT ; Defect detection ; DST ; DWT ; Exact sciences and technology ; Feature extraction ; Materials science ; Materials testing ; Metals. Metallurgy ; MFCCs ; Noise ; Nondestructive testing ; Performance evaluation ; Physics ; Radiography ; Testing for defects ; Transforms ; Weld defects ; Welding</subject><ispartof>NDT &amp; E international : independent nondestructive testing and evaluation, 2011-03, Vol.44 (2), p.226-231</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</citedby><cites>FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23834121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasban, H.</creatorcontrib><creatorcontrib>Zahran, O.</creatorcontrib><creatorcontrib>Arafa, H.</creatorcontrib><creatorcontrib>El-Kordy, M.</creatorcontrib><creatorcontrib>Elaraby, S.M.S.</creatorcontrib><creatorcontrib>Abd El-Samie, F.E.</creatorcontrib><title>Welding defect detection from radiography images with a cepstral approach</title><title>NDT &amp; E international : independent nondestructive testing and evaluation</title><description>This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.</description><subject>Analysing. Testing. Standards</subject><subject>Applied sciences</subject><subject>Blurring</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DCT</subject><subject>Defect detection</subject><subject>DST</subject><subject>DWT</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Metals. Metallurgy</subject><subject>MFCCs</subject><subject>Noise</subject><subject>Nondestructive testing</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Radiography</subject><subject>Testing for defects</subject><subject>Transforms</subject><subject>Weld defects</subject><subject>Welding</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QZiNuJqaTCaPWYkUH4WCG8VluM3ctCnTmTGZKv33pra4dXXgcO49nI-Qa0YnjDJ5t5609YC-HSYF_fUmlIoTMmJaVTljqjwlI1pJnmtZiXNyEeOaUlqUXI3I7AOb2rfLrEaHdkgyJPFdm7nQbbIAte-WAfrVLvMbWGLMvv2wyiCz2MchQJNB34cO7OqSnDloIl4ddUzenx7fpi_5_PV5Nn2Y55YrNuSF4-VCgUaJAsBqwa2Siilaca6tqMSiWJRCAqOUi7Kq5MI5LZxSEnSJIPmY3B7-ptrPLcbBbHy02DTQYreNRsuyZIVKj8dEHJI2dDEGdKYPaUTYGUbNnpxZmyM5sye3txO5dHdzbIBooXEBWuvj33HBNU8NLOXuDzlMc788BhOtx9Zi7UOCaOrO_9P0A-4jhoI</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Kasban, H.</creator><creator>Zahran, O.</creator><creator>Arafa, H.</creator><creator>El-Kordy, M.</creator><creator>Elaraby, S.M.S.</creator><creator>Abd El-Samie, F.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20110301</creationdate><title>Welding defect detection from radiography images with a cepstral approach</title><author>Kasban, H. ; Zahran, O. ; Arafa, H. ; El-Kordy, M. ; Elaraby, S.M.S. ; Abd El-Samie, F.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysing. Testing. Standards</topic><topic>Applied sciences</topic><topic>Blurring</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DCT</topic><topic>Defect detection</topic><topic>DST</topic><topic>DWT</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Metals. Metallurgy</topic><topic>MFCCs</topic><topic>Noise</topic><topic>Nondestructive testing</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Radiography</topic><topic>Testing for defects</topic><topic>Transforms</topic><topic>Weld defects</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasban, H.</creatorcontrib><creatorcontrib>Zahran, O.</creatorcontrib><creatorcontrib>Arafa, H.</creatorcontrib><creatorcontrib>El-Kordy, M.</creatorcontrib><creatorcontrib>Elaraby, S.M.S.</creatorcontrib><creatorcontrib>Abd El-Samie, F.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasban, H.</au><au>Zahran, O.</au><au>Arafa, H.</au><au>El-Kordy, M.</au><au>Elaraby, S.M.S.</au><au>Abd El-Samie, F.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Welding defect detection from radiography images with a cepstral approach</atitle><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>44</volume><issue>2</issue><spage>226</spage><epage>231</epage><pages>226-231</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>This paper presents a new approach for feature extraction from radiography images acquired with gamma rays in order to detect weld defects. In this approach, images are lexicographically ordered into 1D signals. Then, Mel-Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from these signals, one of their transforms, or both of them. Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) are tested and compared for efficient feature extraction. Neural networks are used for feature matching in the proposed approach. Sixteen radiography images containing seventy three weld defects are used to evaluate the performance of the proposed approach. For performance evaluation, the tested images are degraded by Gaussian, impulsive, speckle, or Poisson noises with and without blurring. The experimental results show that the proposed approach can be used in a reliable way for automatic defect detection from radiography images in the presence of noise and blurring.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2010.10.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international : independent nondestructive testing and evaluation, 2011-03, Vol.44 (2), p.226-231
issn 0963-8695
1879-1174
language eng
recordid cdi_proquest_miscellaneous_864412785
source ScienceDirect Freedom Collection
subjects Analysing. Testing. Standards
Applied sciences
Blurring
Cross-disciplinary physics: materials science
rheology
DCT
Defect detection
DST
DWT
Exact sciences and technology
Feature extraction
Materials science
Materials testing
Metals. Metallurgy
MFCCs
Noise
Nondestructive testing
Performance evaluation
Physics
Radiography
Testing for defects
Transforms
Weld defects
Welding
title Welding defect detection from radiography images with a cepstral approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Welding%20defect%20detection%20from%20radiography%20images%20with%20a%20cepstral%20approach&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Kasban,%20H.&rft.date=2011-03-01&rft.volume=44&rft.issue=2&rft.spage=226&rft.epage=231&rft.pages=226-231&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2010.10.005&rft_dat=%3Cproquest_cross%3E864412785%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-2f34b7a8e6e5aac853c7671709338c595b2b456a100354996bff85f776a84ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864412785&rft_id=info:pmid/&rfr_iscdi=true