Loading…
Micromechanical analysis of copper trace in printed circuit boards
Printed circuit boards (PCB) are designed and manufactured with a variety of polyamide materials such as solder mask, metallic material such as copper trace, composite materials such as prepreg and core material. Polyamide materials such as solder mask and composite materials such as prepreg play im...
Saved in:
Published in: | Microelectronics and reliability 2011-02, Vol.51 (2), p.416-424 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733 |
container_end_page | 424 |
container_issue | 2 |
container_start_page | 416 |
container_title | Microelectronics and reliability |
container_volume | 51 |
creator | Hu, Guojun Goh Kim, Yong Judy, Lim |
description | Printed circuit boards (PCB) are designed and manufactured with a variety of polyamide materials such as solder mask, metallic material such as copper trace, composite materials such as prepreg and core material. Polyamide materials such as solder mask and composite materials such as prepreg play important factor on the total deformation of laminate package due to the large coefficient of thermal expansion (CTE). On the other hand, the patterning of the copper layers also exerts important influence to the thermal mechanical behavior of the substrate due to the consistent large Young’s modulus of copper at both room temperature and reflow temperature compared with the small Young’s modulus of polyamide materials. Some approximate methods based on rule of mixtures have been used for estimating material properties in layers of copper mixed with interlayer dielectric material, but few techniques include the effect of copper trace pattern. The detailed comparison of different approximate methods has been done in this paper and a modified homogenization method has been proposed to include the effect of copper trace pattern. A series of three point bending test are performed with the comparison of numerical prediction using the proposed homogenization method and the detailed copper trace pattern respectively. Finally, a micromechanical analysis is done for the copper trace crack problem in package-on-package (PoP). |
doi_str_mv | 10.1016/j.microrel.2010.08.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864418639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026271410004324</els_id><sourcerecordid>864418639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733</originalsourceid><addsrcrecordid>eNqFkEtLBDEQhIMouK7-BZmLeJqx89gkc1MXX7DiRcFbyHQymGUeazIr7L93hlWvnhqaqq6uj5BzCgUFKq_WRRsw9tE3BYNxCboAEAdkRrVieSno-yGZATCZM0XFMTlJaQ0ACiidkdvnydt6_LBdQNtktrPNLoWU9XWG_WbjYzZEiz4LXbaJoRu8yzBE3IYhq3obXTolR7Vtkj_7mXPydn_3unzMVy8PT8ubVY5ciSGnoLQsEayWyjGxcLUVjjnOa6kQFC9LpOUCreDcSeeAeaSVVLyqSy0qxfmcXO7vbmL_ufVpMG1I6JvGdr7fJqOlEFRLXo5KuVeO1VKKvjbj562NO0PBTMzM2vwyMxMzA9qMzEbjxU-ETSOMOtoOQ_pzM67ZgtLpleu9zo99v4KPJmHwHXoXosfBuD78F_UN05iFig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864418639</pqid></control><display><type>article</type><title>Micromechanical analysis of copper trace in printed circuit boards</title><source>Elsevier</source><creator>Hu, Guojun ; Goh Kim, Yong ; Judy, Lim</creator><creatorcontrib>Hu, Guojun ; Goh Kim, Yong ; Judy, Lim</creatorcontrib><description>Printed circuit boards (PCB) are designed and manufactured with a variety of polyamide materials such as solder mask, metallic material such as copper trace, composite materials such as prepreg and core material. Polyamide materials such as solder mask and composite materials such as prepreg play important factor on the total deformation of laminate package due to the large coefficient of thermal expansion (CTE). On the other hand, the patterning of the copper layers also exerts important influence to the thermal mechanical behavior of the substrate due to the consistent large Young’s modulus of copper at both room temperature and reflow temperature compared with the small Young’s modulus of polyamide materials. Some approximate methods based on rule of mixtures have been used for estimating material properties in layers of copper mixed with interlayer dielectric material, but few techniques include the effect of copper trace pattern. The detailed comparison of different approximate methods has been done in this paper and a modified homogenization method has been proposed to include the effect of copper trace pattern. A series of three point bending test are performed with the comparison of numerical prediction using the proposed homogenization method and the detailed copper trace pattern respectively. Finally, a micromechanical analysis is done for the copper trace crack problem in package-on-package (PoP).</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/j.microrel.2010.08.004</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boards ; Copper ; Design. Technologies. Operation analysis. Testing ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Homogenizing ; Integrated circuits ; Laminates ; Materials ; Mathematical models ; Polyamide resins ; Printed circuits ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solders</subject><ispartof>Microelectronics and reliability, 2011-02, Vol.51 (2), p.416-424</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733</citedby><cites>FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23825113$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Guojun</creatorcontrib><creatorcontrib>Goh Kim, Yong</creatorcontrib><creatorcontrib>Judy, Lim</creatorcontrib><title>Micromechanical analysis of copper trace in printed circuit boards</title><title>Microelectronics and reliability</title><description>Printed circuit boards (PCB) are designed and manufactured with a variety of polyamide materials such as solder mask, metallic material such as copper trace, composite materials such as prepreg and core material. Polyamide materials such as solder mask and composite materials such as prepreg play important factor on the total deformation of laminate package due to the large coefficient of thermal expansion (CTE). On the other hand, the patterning of the copper layers also exerts important influence to the thermal mechanical behavior of the substrate due to the consistent large Young’s modulus of copper at both room temperature and reflow temperature compared with the small Young’s modulus of polyamide materials. Some approximate methods based on rule of mixtures have been used for estimating material properties in layers of copper mixed with interlayer dielectric material, but few techniques include the effect of copper trace pattern. The detailed comparison of different approximate methods has been done in this paper and a modified homogenization method has been proposed to include the effect of copper trace pattern. A series of three point bending test are performed with the comparison of numerical prediction using the proposed homogenization method and the detailed copper trace pattern respectively. Finally, a micromechanical analysis is done for the copper trace crack problem in package-on-package (PoP).</description><subject>Applied sciences</subject><subject>Boards</subject><subject>Copper</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Homogenizing</subject><subject>Integrated circuits</subject><subject>Laminates</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Polyamide resins</subject><subject>Printed circuits</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solders</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLBDEQhIMouK7-BZmLeJqx89gkc1MXX7DiRcFbyHQymGUeazIr7L93hlWvnhqaqq6uj5BzCgUFKq_WRRsw9tE3BYNxCboAEAdkRrVieSno-yGZATCZM0XFMTlJaQ0ACiidkdvnydt6_LBdQNtktrPNLoWU9XWG_WbjYzZEiz4LXbaJoRu8yzBE3IYhq3obXTolR7Vtkj_7mXPydn_3unzMVy8PT8ubVY5ciSGnoLQsEayWyjGxcLUVjjnOa6kQFC9LpOUCreDcSeeAeaSVVLyqSy0qxfmcXO7vbmL_ufVpMG1I6JvGdr7fJqOlEFRLXo5KuVeO1VKKvjbj562NO0PBTMzM2vwyMxMzA9qMzEbjxU-ETSOMOtoOQ_pzM67ZgtLpleu9zo99v4KPJmHwHXoXosfBuD78F_UN05iFig</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Hu, Guojun</creator><creator>Goh Kim, Yong</creator><creator>Judy, Lim</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Micromechanical analysis of copper trace in printed circuit boards</title><author>Hu, Guojun ; Goh Kim, Yong ; Judy, Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boards</topic><topic>Copper</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Homogenizing</topic><topic>Integrated circuits</topic><topic>Laminates</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Polyamide resins</topic><topic>Printed circuits</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guojun</creatorcontrib><creatorcontrib>Goh Kim, Yong</creatorcontrib><creatorcontrib>Judy, Lim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guojun</au><au>Goh Kim, Yong</au><au>Judy, Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical analysis of copper trace in printed circuit boards</atitle><jtitle>Microelectronics and reliability</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>51</volume><issue>2</issue><spage>416</spage><epage>424</epage><pages>416-424</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>Printed circuit boards (PCB) are designed and manufactured with a variety of polyamide materials such as solder mask, metallic material such as copper trace, composite materials such as prepreg and core material. Polyamide materials such as solder mask and composite materials such as prepreg play important factor on the total deformation of laminate package due to the large coefficient of thermal expansion (CTE). On the other hand, the patterning of the copper layers also exerts important influence to the thermal mechanical behavior of the substrate due to the consistent large Young’s modulus of copper at both room temperature and reflow temperature compared with the small Young’s modulus of polyamide materials. Some approximate methods based on rule of mixtures have been used for estimating material properties in layers of copper mixed with interlayer dielectric material, but few techniques include the effect of copper trace pattern. The detailed comparison of different approximate methods has been done in this paper and a modified homogenization method has been proposed to include the effect of copper trace pattern. A series of three point bending test are performed with the comparison of numerical prediction using the proposed homogenization method and the detailed copper trace pattern respectively. Finally, a micromechanical analysis is done for the copper trace crack problem in package-on-package (PoP).</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.microrel.2010.08.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-2714 |
ispartof | Microelectronics and reliability, 2011-02, Vol.51 (2), p.416-424 |
issn | 0026-2714 1872-941X |
language | eng |
recordid | cdi_proquest_miscellaneous_864418639 |
source | Elsevier |
subjects | Applied sciences Boards Copper Design. Technologies. Operation analysis. Testing Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Homogenizing Integrated circuits Laminates Materials Mathematical models Polyamide resins Printed circuits Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solders |
title | Micromechanical analysis of copper trace in printed circuit boards |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20analysis%20of%20copper%20trace%20in%20printed%20circuit%20boards&rft.jtitle=Microelectronics%20and%20reliability&rft.au=Hu,%20Guojun&rft.date=2011-02-01&rft.volume=51&rft.issue=2&rft.spage=416&rft.epage=424&rft.pages=416-424&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/j.microrel.2010.08.004&rft_dat=%3Cproquest_cross%3E864418639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-107869c0a867d245dfa4d2d33f67c07399c195ca433d6dd02ec1b673bf984b733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864418639&rft_id=info:pmid/&rfr_iscdi=true |