Loading…

Functional soft materials from metallopolymers and metallosupramolecular polymers

The presence of metal centres in synthetic polymers can impart interesting functionality on the resultant material. This Review Article focuses on the use of metal-containing polymers in a diverse range of applications, for example, in emissive and optical materials, in nanomaterials, as sensors, st...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2011-03, Vol.10 (3), p.176-188
Main Authors: Whittell, George R, Manners, Ian, Schubert, Ulrich S, Hager, Martin D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of metal centres in synthetic polymers can impart interesting functionality on the resultant material. This Review Article focuses on the use of metal-containing polymers in a diverse range of applications, for example, in emissive and optical materials, in nanomaterials, as sensors, stimuli-responsive gels, catalysts and artifical metalloenzymes. Synthetic polymers containing metal centres are emerging as an interesting and broad class of easily processable materials with properties and functions that complement those of state-of-the-art organic macromolecular materials. A diverse range of different metal centres can be harnessed to tune macromolecular properties, from transition- and main-group metals to lanthanides. Moreover, the linkages that bind the metal centres can vary almost continuously from strong, essentially covalent bonds that lead to irreversible or 'static' binding of the metal to weak and labile, non-covalent coordination interactions that allow for reversible, 'dynamic' or 'metallosupramolecular', binding. Here we review recent advances and challenges in the field and illustrate developments towards applications as emissive and photovoltaic materials; as optical limiters; in nanoelectronics, information storage, nanopatterning and sensing; as macromolecular catalysts and artificial enzymes; and as stimuli-responsive materials. We focus on materials in which the metal centres provide function; although they can also play a structural role, systems where this is solely their purpose have not been discussed.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat2966