Loading…

Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg

Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2011-03, Vol.509 (10), p.4092-4097
Main Authors: Li, X.F., Dong, A.P., Wang, L.T., Yu, Z., Meng, L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4097
container_issue 10
container_start_page 4092
container_title Journal of alloys and compounds
container_volume 509
creator Li, X.F.
Dong, A.P.
Wang, L.T.
Yu, Z.
Meng, L.
description Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700 °C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.
doi_str_mv 10.1016/j.jallcom.2010.05.166
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_864429305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838810013861</els_id><sourcerecordid>864429305</sourcerecordid><originalsourceid>FETCH-LOGICAL-e273t-dadc54580b0b88d2587dd650bf4954d2934b1a5df68a32a5a34e972d4035f2f13</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQdRsFYfQcimuEq885dMViLBP6i4sG5EGCaZiZ0yTepM2tKd7-Ab-iTGpqvLd_k4HA5ClxgSDDi9XiQL5VzVLhMC_Q94gtP0CI2wyGjM0jQ_RiPICY8FFeIUnYWwAACcUzxCH7O58UvlotCp0jrb7aK2juZGbazbRdqrbRMV69_vH0hYtO2SSeH3gMme3geCgV7tQHxPz5_n6KRWLpiLwx2jt_u7WfEYT18enorbaWxIRrtYK11xxgWUUAqhCReZ1imHsmY5Z5rklJVYcV2nQlGiuKLM5BnRDCivSY3pGF0NuSvffq1N6OTShso4pxrTroMUKWN9CvDenBxMFSrlaq-ayga58nap_E4SmoPoq_TezeCZvvbGGi9DZU1TGW29qTqpWysxyP_55UIe5pf_80vgsp-f_gF3Enqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864429305</pqid></control><display><type>article</type><title>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</title><source>ScienceDirect Freedom Collection</source><creator>Li, X.F. ; Dong, A.P. ; Wang, L.T. ; Yu, Z. ; Meng, L.</creator><creatorcontrib>Li, X.F. ; Dong, A.P. ; Wang, L.T. ; Yu, Z. ; Meng, L.</creatorcontrib><description>Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700 °C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2010.05.166</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>AGING MECHANISMS ; Annealing ; ANNEALING PROCESSES ; Copper base alloys ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL ORIENTATION ; Diamond pyramid hardness ; DISLOCATIONS ; Exact sciences and technology ; HARDNESS ; Internal energy ; Materials science ; Mechanical properties ; Metals and alloys ; Microstructure ; Other heat and thermomechanical treatments ; Physics ; RECRYSTALLIZATION ; REDUCTION ; Thermal analysis ; THERMAL STABILITY ; Treatment of materials and its effects on microstructure and properties ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2011-03, Vol.509 (10), p.4092-4097</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23908545$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Dong, A.P.</creatorcontrib><creatorcontrib>Wang, L.T.</creatorcontrib><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Meng, L.</creatorcontrib><title>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</title><title>Journal of alloys and compounds</title><description>Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700 °C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.</description><subject>AGING MECHANISMS</subject><subject>Annealing</subject><subject>ANNEALING PROCESSES</subject><subject>Copper base alloys</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL ORIENTATION</subject><subject>Diamond pyramid hardness</subject><subject>DISLOCATIONS</subject><subject>Exact sciences and technology</subject><subject>HARDNESS</subject><subject>Internal energy</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Metals and alloys</subject><subject>Microstructure</subject><subject>Other heat and thermomechanical treatments</subject><subject>Physics</subject><subject>RECRYSTALLIZATION</subject><subject>REDUCTION</subject><subject>Thermal analysis</subject><subject>THERMAL STABILITY</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AUhQdRsFYfQcimuEq885dMViLBP6i4sG5EGCaZiZ0yTepM2tKd7-Ab-iTGpqvLd_k4HA5ClxgSDDi9XiQL5VzVLhMC_Q94gtP0CI2wyGjM0jQ_RiPICY8FFeIUnYWwAACcUzxCH7O58UvlotCp0jrb7aK2juZGbazbRdqrbRMV69_vH0hYtO2SSeH3gMme3geCgV7tQHxPz5_n6KRWLpiLwx2jt_u7WfEYT18enorbaWxIRrtYK11xxgWUUAqhCReZ1imHsmY5Z5rklJVYcV2nQlGiuKLM5BnRDCivSY3pGF0NuSvffq1N6OTShso4pxrTroMUKWN9CvDenBxMFSrlaq-ayga58nap_E4SmoPoq_TezeCZvvbGGi9DZU1TGW29qTqpWysxyP_55UIe5pf_80vgsp-f_gF3Enqj</recordid><startdate>20110310</startdate><enddate>20110310</enddate><creator>Li, X.F.</creator><creator>Dong, A.P.</creator><creator>Wang, L.T.</creator><creator>Yu, Z.</creator><creator>Meng, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110310</creationdate><title>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</title><author>Li, X.F. ; Dong, A.P. ; Wang, L.T. ; Yu, Z. ; Meng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e273t-dadc54580b0b88d2587dd650bf4954d2934b1a5df68a32a5a34e972d4035f2f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>AGING MECHANISMS</topic><topic>Annealing</topic><topic>ANNEALING PROCESSES</topic><topic>Copper base alloys</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL ORIENTATION</topic><topic>Diamond pyramid hardness</topic><topic>DISLOCATIONS</topic><topic>Exact sciences and technology</topic><topic>HARDNESS</topic><topic>Internal energy</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Metals and alloys</topic><topic>Microstructure</topic><topic>Other heat and thermomechanical treatments</topic><topic>Physics</topic><topic>RECRYSTALLIZATION</topic><topic>REDUCTION</topic><topic>Thermal analysis</topic><topic>THERMAL STABILITY</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Dong, A.P.</creatorcontrib><creatorcontrib>Wang, L.T.</creatorcontrib><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Meng, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.F.</au><au>Dong, A.P.</au><au>Wang, L.T.</au><au>Yu, Z.</au><au>Meng, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2011-03-10</date><risdate>2011</risdate><volume>509</volume><issue>10</issue><spage>4092</spage><epage>4097</epage><pages>4092-4097</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700 °C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2010.05.166</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2011-03, Vol.509 (10), p.4092-4097
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_864429305
source ScienceDirect Freedom Collection
subjects AGING MECHANISMS
Annealing
ANNEALING PROCESSES
Copper base alloys
Cross-disciplinary physics: materials science
rheology
CRYSTAL ORIENTATION
Diamond pyramid hardness
DISLOCATIONS
Exact sciences and technology
HARDNESS
Internal energy
Materials science
Mechanical properties
Metals and alloys
Microstructure
Other heat and thermomechanical treatments
Physics
RECRYSTALLIZATION
REDUCTION
Thermal analysis
THERMAL STABILITY
Treatment of materials and its effects on microstructure and properties
X-ray diffraction
title Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20heavily%20drawn%20Cu%E2%80%930.4%20wt.%25Cr%E2%80%930.12%20wt.%25Zr%E2%80%930.02%20wt.%25Si%E2%80%930.05%20wt.%25Mg&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Li,%20X.F.&rft.date=2011-03-10&rft.volume=509&rft.issue=10&rft.spage=4092&rft.epage=4097&rft.pages=4092-4097&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2010.05.166&rft_dat=%3Cproquest_pasca%3E864429305%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e273t-dadc54580b0b88d2587dd650bf4954d2934b1a5df68a32a5a34e972d4035f2f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864429305&rft_id=info:pmid/&rfr_iscdi=true