Loading…
Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg
Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wi...
Saved in:
Published in: | Journal of alloys and compounds 2011-03, Vol.509 (10), p.4092-4097 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4097 |
container_issue | 10 |
container_start_page | 4092 |
container_title | Journal of alloys and compounds |
container_volume | 509 |
creator | Li, X.F. Dong, A.P. Wang, L.T. Yu, Z. Meng, L. |
description | Cu–0.4
wt.%Cr–0.12
wt.%Zr–0.02
wt.%Si–0.05
wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700
°C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism. |
doi_str_mv | 10.1016/j.jallcom.2010.05.166 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_864429305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838810013861</els_id><sourcerecordid>864429305</sourcerecordid><originalsourceid>FETCH-LOGICAL-e273t-dadc54580b0b88d2587dd650bf4954d2934b1a5df68a32a5a34e972d4035f2f13</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQdRsFYfQcimuEq885dMViLBP6i4sG5EGCaZiZ0yTepM2tKd7-Ab-iTGpqvLd_k4HA5ClxgSDDi9XiQL5VzVLhMC_Q94gtP0CI2wyGjM0jQ_RiPICY8FFeIUnYWwAACcUzxCH7O58UvlotCp0jrb7aK2juZGbazbRdqrbRMV69_vH0hYtO2SSeH3gMme3geCgV7tQHxPz5_n6KRWLpiLwx2jt_u7WfEYT18enorbaWxIRrtYK11xxgWUUAqhCReZ1imHsmY5Z5rklJVYcV2nQlGiuKLM5BnRDCivSY3pGF0NuSvffq1N6OTShso4pxrTroMUKWN9CvDenBxMFSrlaq-ayga58nap_E4SmoPoq_TezeCZvvbGGi9DZU1TGW29qTqpWysxyP_55UIe5pf_80vgsp-f_gF3Enqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864429305</pqid></control><display><type>article</type><title>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</title><source>ScienceDirect Freedom Collection</source><creator>Li, X.F. ; Dong, A.P. ; Wang, L.T. ; Yu, Z. ; Meng, L.</creator><creatorcontrib>Li, X.F. ; Dong, A.P. ; Wang, L.T. ; Yu, Z. ; Meng, L.</creatorcontrib><description>Cu–0.4
wt.%Cr–0.12
wt.%Zr–0.02
wt.%Si–0.05
wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700
°C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2010.05.166</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>AGING MECHANISMS ; Annealing ; ANNEALING PROCESSES ; Copper base alloys ; Cross-disciplinary physics: materials science; rheology ; CRYSTAL ORIENTATION ; Diamond pyramid hardness ; DISLOCATIONS ; Exact sciences and technology ; HARDNESS ; Internal energy ; Materials science ; Mechanical properties ; Metals and alloys ; Microstructure ; Other heat and thermomechanical treatments ; Physics ; RECRYSTALLIZATION ; REDUCTION ; Thermal analysis ; THERMAL STABILITY ; Treatment of materials and its effects on microstructure and properties ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2011-03, Vol.509 (10), p.4092-4097</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23908545$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Dong, A.P.</creatorcontrib><creatorcontrib>Wang, L.T.</creatorcontrib><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Meng, L.</creatorcontrib><title>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</title><title>Journal of alloys and compounds</title><description>Cu–0.4
wt.%Cr–0.12
wt.%Zr–0.02
wt.%Si–0.05
wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700
°C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.</description><subject>AGING MECHANISMS</subject><subject>Annealing</subject><subject>ANNEALING PROCESSES</subject><subject>Copper base alloys</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CRYSTAL ORIENTATION</subject><subject>Diamond pyramid hardness</subject><subject>DISLOCATIONS</subject><subject>Exact sciences and technology</subject><subject>HARDNESS</subject><subject>Internal energy</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Metals and alloys</subject><subject>Microstructure</subject><subject>Other heat and thermomechanical treatments</subject><subject>Physics</subject><subject>RECRYSTALLIZATION</subject><subject>REDUCTION</subject><subject>Thermal analysis</subject><subject>THERMAL STABILITY</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AUhQdRsFYfQcimuEq885dMViLBP6i4sG5EGCaZiZ0yTepM2tKd7-Ab-iTGpqvLd_k4HA5ClxgSDDi9XiQL5VzVLhMC_Q94gtP0CI2wyGjM0jQ_RiPICY8FFeIUnYWwAACcUzxCH7O58UvlotCp0jrb7aK2juZGbazbRdqrbRMV69_vH0hYtO2SSeH3gMme3geCgV7tQHxPz5_n6KRWLpiLwx2jt_u7WfEYT18enorbaWxIRrtYK11xxgWUUAqhCReZ1imHsmY5Z5rklJVYcV2nQlGiuKLM5BnRDCivSY3pGF0NuSvffq1N6OTShso4pxrTroMUKWN9CvDenBxMFSrlaq-ayga58nap_E4SmoPoq_TezeCZvvbGGi9DZU1TGW29qTqpWysxyP_55UIe5pf_80vgsp-f_gF3Enqj</recordid><startdate>20110310</startdate><enddate>20110310</enddate><creator>Li, X.F.</creator><creator>Dong, A.P.</creator><creator>Wang, L.T.</creator><creator>Yu, Z.</creator><creator>Meng, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20110310</creationdate><title>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</title><author>Li, X.F. ; Dong, A.P. ; Wang, L.T. ; Yu, Z. ; Meng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e273t-dadc54580b0b88d2587dd650bf4954d2934b1a5df68a32a5a34e972d4035f2f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>AGING MECHANISMS</topic><topic>Annealing</topic><topic>ANNEALING PROCESSES</topic><topic>Copper base alloys</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CRYSTAL ORIENTATION</topic><topic>Diamond pyramid hardness</topic><topic>DISLOCATIONS</topic><topic>Exact sciences and technology</topic><topic>HARDNESS</topic><topic>Internal energy</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Metals and alloys</topic><topic>Microstructure</topic><topic>Other heat and thermomechanical treatments</topic><topic>Physics</topic><topic>RECRYSTALLIZATION</topic><topic>REDUCTION</topic><topic>Thermal analysis</topic><topic>THERMAL STABILITY</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Dong, A.P.</creatorcontrib><creatorcontrib>Wang, L.T.</creatorcontrib><creatorcontrib>Yu, Z.</creatorcontrib><creatorcontrib>Meng, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X.F.</au><au>Dong, A.P.</au><au>Wang, L.T.</au><au>Yu, Z.</au><au>Meng, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2011-03-10</date><risdate>2011</risdate><volume>509</volume><issue>10</issue><spage>4092</spage><epage>4097</epage><pages>4092-4097</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Cu–0.4
wt.%Cr–0.12
wt.%Zr–0.02
wt.%Si–0.05
wt.%Mg was prepared by casting, quenching, aging and cold drawing. The microstructure was studied by electron microscope and X-ray diffraction. Vickers hardness was measured for the alloy after the annealing treatment at different temperatures covering a wide temperature range from room temperature to 700
°C. The ribbonlike structure is replaced by gross equiaxed grains. The crystal orientation is gradually approaching the full annealed specimen and the hardness difference between longitudinal and transverse directions vanishes by recovery and recrystallization. The thermal analysis was carried out and the stored energy was calculated. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2010.05.166</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2011-03, Vol.509 (10), p.4092-4097 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_864429305 |
source | ScienceDirect Freedom Collection |
subjects | AGING MECHANISMS Annealing ANNEALING PROCESSES Copper base alloys Cross-disciplinary physics: materials science rheology CRYSTAL ORIENTATION Diamond pyramid hardness DISLOCATIONS Exact sciences and technology HARDNESS Internal energy Materials science Mechanical properties Metals and alloys Microstructure Other heat and thermomechanical treatments Physics RECRYSTALLIZATION REDUCTION Thermal analysis THERMAL STABILITY Treatment of materials and its effects on microstructure and properties X-ray diffraction |
title | Thermal stability of heavily drawn Cu–0.4 wt.%Cr–0.12 wt.%Zr–0.02 wt.%Si–0.05 wt.%Mg |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20heavily%20drawn%20Cu%E2%80%930.4%20wt.%25Cr%E2%80%930.12%20wt.%25Zr%E2%80%930.02%20wt.%25Si%E2%80%930.05%20wt.%25Mg&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Li,%20X.F.&rft.date=2011-03-10&rft.volume=509&rft.issue=10&rft.spage=4092&rft.epage=4097&rft.pages=4092-4097&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2010.05.166&rft_dat=%3Cproquest_pasca%3E864429305%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e273t-dadc54580b0b88d2587dd650bf4954d2934b1a5df68a32a5a34e972d4035f2f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864429305&rft_id=info:pmid/&rfr_iscdi=true |