Loading…

Phytochrome signalling is mediated through nucleoside diphosphate kinase 2

Because plants are sessile, they have developed intricate strategies to adapt to changing environmental variables, including light. Their growth and development, from germination to flowering, is critically influenced by light, particularly at red (660 nm) and far-red (730 nm) wavelengths. Higher pl...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1999-10, Vol.401 (6753), p.610-613
Main Authors: Choi, Giltsu, Yi, Hankuil, Lee, Jaeho, Kwon, Yong-Kook, Soo Soh, Moon, Shin, Byongchul, Luka, Zigmund, Hahn, Tae-Ryong, Song, Pill-Soon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because plants are sessile, they have developed intricate strategies to adapt to changing environmental variables, including light. Their growth and development, from germination to flowering, is critically influenced by light, particularly at red (660 nm) and far-red (730 nm) wavelengths. Higher plants perceive red and far-red light by means of specific light sensors called phytochromes(A-E). However, very little is known about how light signals are transduced to elicit responses in plants. Here we report that nucleoside diphosphate kinase 2 (NDPK2) is an upstream component in the phytochrome signalling pathway in the plant Arabidopsis thaliana. In animal and human cells, NDPK acts as a tumour suppressor. We show that recombinant NDPK2 in Arabidopsis preferentially binds to the red-light-activated form of phytochrome in vitro and that this interaction increases the activity of recombinant NDPK2. Furthermore, a mutant lacking NDPK2 showed a partial defect in responses to both red and far-red light, including cotyledon opening and greening. These results indicate that NDPK2 is a positive signalling component of the phytochrome-mediated light-signal-transduction pathway in Arabidopsis.
ISSN:0028-0836
1476-4687
DOI:10.1038/44176