Loading…

A nonlinear POD reduced order model for limit cycle oscillation prediction

As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture th...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2010-07, Vol.53 (7), p.1325-1332
Main Authors: Chen, Gang, Li, YueMing, Yan, GuiRong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783
cites cdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783
container_end_page 1332
container_issue 7
container_start_page 1325
container_title Science China. Physics, mechanics & astronomy
container_volume 53
creator Chen, Gang
Li, YueMing
Yan, GuiRong
description As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.
doi_str_mv 10.1007/s11433-010-4013-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864954878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918593437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuAC1fRvGaSLEt9U6gLXYdp5o6kzExqMrPovzd1BEHwbu5ZfOdwOAhdMnrDKFW3iTEpBKGMEkmZIPwEzZguDWGGq9OsSyWJElKfo0VKO5pPGCqVnKGXJe5D3_oeqohfN3c4Qj06qHGINUTchRpa3ISIW9_5AbuDawGH5HzbVoMPPd5ng3dHeYHOmqpNsPj5c_T-cP-2eiLrzePzarkmLjcYCFOuFFA1pqZaNooXaku3UjRGCGdkVbKSasWAg4DaCMWFBOcUKyitC86VFnN0PeXuY_gcIQ2288lBLtRDGJPVpTSF1N_k1R9yF8bY53KWG6YLI6RQmWIT5WJIKUJj99F3VTxYRu1xXzvta_O-9riv5dnDJ0_KbP8B8Tf5f9MXXgl6-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918593437</pqid></control><display><type>article</type><title>A nonlinear POD reduced order model for limit cycle oscillation prediction</title><source>Springer Nature</source><creator>Chen, Gang ; Li, YueMing ; Yan, GuiRong</creator><creatorcontrib>Chen, Gang ; Li, YueMing ; Yan, GuiRong</creatorcontrib><description>As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-010-4013-2</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Aeroelasticity ; Astronomy ; Classical and Continuum Physics ; Decomposition ; Flow equations ; Limit cycle oscillations ; Observations and Techniques ; Physics ; Physics and Astronomy ; Proper Orthogonal Decomposition ; Reduced order models ; Research Paper ; Series expansion ; Solvers ; Taylor series ; Unsteady flow</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2010-07, Vol.53 (7), p.1325-1332</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</citedby><cites>FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Li, YueMing</creatorcontrib><creatorcontrib>Yan, GuiRong</creatorcontrib><title>A nonlinear POD reduced order model for limit cycle oscillation prediction</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.</description><subject>Aeroelasticity</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Decomposition</subject><subject>Flow equations</subject><subject>Limit cycle oscillations</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduced order models</subject><subject>Research Paper</subject><subject>Series expansion</subject><subject>Solvers</subject><subject>Taylor series</subject><subject>Unsteady flow</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuAC1fRvGaSLEt9U6gLXYdp5o6kzExqMrPovzd1BEHwbu5ZfOdwOAhdMnrDKFW3iTEpBKGMEkmZIPwEzZguDWGGq9OsSyWJElKfo0VKO5pPGCqVnKGXJe5D3_oeqohfN3c4Qj06qHGINUTchRpa3ISIW9_5AbuDawGH5HzbVoMPPd5ng3dHeYHOmqpNsPj5c_T-cP-2eiLrzePzarkmLjcYCFOuFFA1pqZaNooXaku3UjRGCGdkVbKSasWAg4DaCMWFBOcUKyitC86VFnN0PeXuY_gcIQ2288lBLtRDGJPVpTSF1N_k1R9yF8bY53KWG6YLI6RQmWIT5WJIKUJj99F3VTxYRu1xXzvta_O-9riv5dnDJ0_KbP8B8Tf5f9MXXgl6-g</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Chen, Gang</creator><creator>Li, YueMing</creator><creator>Yan, GuiRong</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100701</creationdate><title>A nonlinear POD reduced order model for limit cycle oscillation prediction</title><author>Chen, Gang ; Li, YueMing ; Yan, GuiRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aeroelasticity</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Decomposition</topic><topic>Flow equations</topic><topic>Limit cycle oscillations</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduced order models</topic><topic>Research Paper</topic><topic>Series expansion</topic><topic>Solvers</topic><topic>Taylor series</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Li, YueMing</creatorcontrib><creatorcontrib>Yan, GuiRong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Li, YueMing</au><au>Yan, GuiRong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear POD reduced order model for limit cycle oscillation prediction</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>53</volume><issue>7</issue><spage>1325</spage><epage>1332</epage><pages>1325-1332</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-010-4013-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2010-07, Vol.53 (7), p.1325-1332
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_miscellaneous_864954878
source Springer Nature
subjects Aeroelasticity
Astronomy
Classical and Continuum Physics
Decomposition
Flow equations
Limit cycle oscillations
Observations and Techniques
Physics
Physics and Astronomy
Proper Orthogonal Decomposition
Reduced order models
Research Paper
Series expansion
Solvers
Taylor series
Unsteady flow
title A nonlinear POD reduced order model for limit cycle oscillation prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20POD%20reduced%20order%20model%20for%20limit%20cycle%20oscillation%20prediction&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Chen,%20Gang&rft.date=2010-07-01&rft.volume=53&rft.issue=7&rft.spage=1325&rft.epage=1332&rft.pages=1325-1332&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-010-4013-2&rft_dat=%3Cproquest_cross%3E2918593437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918593437&rft_id=info:pmid/&rfr_iscdi=true