Loading…
A nonlinear POD reduced order model for limit cycle oscillation prediction
As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture th...
Saved in:
Published in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2010-07, Vol.53 (7), p.1325-1332 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783 |
container_end_page | 1332 |
container_issue | 7 |
container_start_page | 1325 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 53 |
creator | Chen, Gang Li, YueMing Yan, GuiRong |
description | As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness. |
doi_str_mv | 10.1007/s11433-010-4013-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864954878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918593437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuAC1fRvGaSLEt9U6gLXYdp5o6kzExqMrPovzd1BEHwbu5ZfOdwOAhdMnrDKFW3iTEpBKGMEkmZIPwEzZguDWGGq9OsSyWJElKfo0VKO5pPGCqVnKGXJe5D3_oeqohfN3c4Qj06qHGINUTchRpa3ISIW9_5AbuDawGH5HzbVoMPPd5ng3dHeYHOmqpNsPj5c_T-cP-2eiLrzePzarkmLjcYCFOuFFA1pqZaNooXaku3UjRGCGdkVbKSasWAg4DaCMWFBOcUKyitC86VFnN0PeXuY_gcIQ2288lBLtRDGJPVpTSF1N_k1R9yF8bY53KWG6YLI6RQmWIT5WJIKUJj99F3VTxYRu1xXzvta_O-9riv5dnDJ0_KbP8B8Tf5f9MXXgl6-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918593437</pqid></control><display><type>article</type><title>A nonlinear POD reduced order model for limit cycle oscillation prediction</title><source>Springer Nature</source><creator>Chen, Gang ; Li, YueMing ; Yan, GuiRong</creator><creatorcontrib>Chen, Gang ; Li, YueMing ; Yan, GuiRong</creatorcontrib><description>As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-010-4013-2</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Aeroelasticity ; Astronomy ; Classical and Continuum Physics ; Decomposition ; Flow equations ; Limit cycle oscillations ; Observations and Techniques ; Physics ; Physics and Astronomy ; Proper Orthogonal Decomposition ; Reduced order models ; Research Paper ; Series expansion ; Solvers ; Taylor series ; Unsteady flow</subject><ispartof>Science China. Physics, mechanics & astronomy, 2010-07, Vol.53 (7), p.1325-1332</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</citedby><cites>FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Li, YueMing</creatorcontrib><creatorcontrib>Yan, GuiRong</creatorcontrib><title>A nonlinear POD reduced order model for limit cycle oscillation prediction</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.</description><subject>Aeroelasticity</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Decomposition</subject><subject>Flow equations</subject><subject>Limit cycle oscillations</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduced order models</subject><subject>Research Paper</subject><subject>Series expansion</subject><subject>Solvers</subject><subject>Taylor series</subject><subject>Unsteady flow</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuAC1fRvGaSLEt9U6gLXYdp5o6kzExqMrPovzd1BEHwbu5ZfOdwOAhdMnrDKFW3iTEpBKGMEkmZIPwEzZguDWGGq9OsSyWJElKfo0VKO5pPGCqVnKGXJe5D3_oeqohfN3c4Qj06qHGINUTchRpa3ISIW9_5AbuDawGH5HzbVoMPPd5ng3dHeYHOmqpNsPj5c_T-cP-2eiLrzePzarkmLjcYCFOuFFA1pqZaNooXaku3UjRGCGdkVbKSasWAg4DaCMWFBOcUKyitC86VFnN0PeXuY_gcIQ2288lBLtRDGJPVpTSF1N_k1R9yF8bY53KWG6YLI6RQmWIT5WJIKUJj99F3VTxYRu1xXzvta_O-9riv5dnDJ0_KbP8B8Tf5f9MXXgl6-g</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Chen, Gang</creator><creator>Li, YueMing</creator><creator>Yan, GuiRong</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100701</creationdate><title>A nonlinear POD reduced order model for limit cycle oscillation prediction</title><author>Chen, Gang ; Li, YueMing ; Yan, GuiRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aeroelasticity</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Decomposition</topic><topic>Flow equations</topic><topic>Limit cycle oscillations</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduced order models</topic><topic>Research Paper</topic><topic>Series expansion</topic><topic>Solvers</topic><topic>Taylor series</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Li, YueMing</creatorcontrib><creatorcontrib>Yan, GuiRong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gang</au><au>Li, YueMing</au><au>Yan, GuiRong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear POD reduced order model for limit cycle oscillation prediction</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>53</volume><issue>7</issue><spage>1325</spage><epage>1332</epage><pages>1325-1332</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation, the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features. A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated. The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver. The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model. The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well, while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-010-4013-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2010-07, Vol.53 (7), p.1325-1332 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_miscellaneous_864954878 |
source | Springer Nature |
subjects | Aeroelasticity Astronomy Classical and Continuum Physics Decomposition Flow equations Limit cycle oscillations Observations and Techniques Physics Physics and Astronomy Proper Orthogonal Decomposition Reduced order models Research Paper Series expansion Solvers Taylor series Unsteady flow |
title | A nonlinear POD reduced order model for limit cycle oscillation prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20POD%20reduced%20order%20model%20for%20limit%20cycle%20oscillation%20prediction&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Chen,%20Gang&rft.date=2010-07-01&rft.volume=53&rft.issue=7&rft.spage=1325&rft.epage=1332&rft.pages=1325-1332&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-010-4013-2&rft_dat=%3Cproquest_cross%3E2918593437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-17c63eaf9d084f7257b0b43f933c94a6160871e2e3ed937234ecc71500d522783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918593437&rft_id=info:pmid/&rfr_iscdi=true |