Loading…
Large-eddy simulations of turbulent mixing layers using the stretched-vortex model
The stretched-vortex subgrid model is used to run large-eddy simulations of temporal mixing layers at various Reynolds and Schmidt numbers, with different initial and boundary conditions. A self-similar flow is obtained, during which the growth rate, mean velocity and Reynolds stresses are in accord...
Saved in:
Published in: | Journal of fluid mechanics 2011-03, Vol.671, p.507-534 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stretched-vortex subgrid model is used to run large-eddy simulations of temporal mixing layers at various Reynolds and Schmidt numbers, with different initial and boundary conditions. A self-similar flow is obtained, during which the growth rate, mean velocity and Reynolds stresses are in accord with experimental results. However, predictions of the amount of mixed fluid, and of the variation in its composition across the layer, are excessive, especially at high Schmidt number. More favourable comparisons between experiment and simulation are obtained when the large-scale flow is quasi-two-dimensional; however, such states are not self-similar and not sustainable. Present model assumptions lead to predictions of the continued subgrid spectrum with a viscous cutoff that is dependent on grid resolution. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S002211201000580X |