Loading…

Large-eddy simulations of turbulent mixing layers using the stretched-vortex model

The stretched-vortex subgrid model is used to run large-eddy simulations of temporal mixing layers at various Reynolds and Schmidt numbers, with different initial and boundary conditions. A self-similar flow is obtained, during which the growth rate, mean velocity and Reynolds stresses are in accord...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2011-03, Vol.671, p.507-534
Main Author: MATTNER, T. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stretched-vortex subgrid model is used to run large-eddy simulations of temporal mixing layers at various Reynolds and Schmidt numbers, with different initial and boundary conditions. A self-similar flow is obtained, during which the growth rate, mean velocity and Reynolds stresses are in accord with experimental results. However, predictions of the amount of mixed fluid, and of the variation in its composition across the layer, are excessive, especially at high Schmidt number. More favourable comparisons between experiment and simulation are obtained when the large-scale flow is quasi-two-dimensional; however, such states are not self-similar and not sustainable. Present model assumptions lead to predictions of the continued subgrid spectrum with a viscous cutoff that is dependent on grid resolution.
ISSN:0022-1120
1469-7645
DOI:10.1017/S002211201000580X