Loading…

Modeling the Vibrational Dynamics and Nonlinear Infrared Spectra of Coupled Amide I and II Modes in Peptides

The amide vibrational modes play an important role in energy transport and relaxation in polypeptides and proteins and provide us with spectral markers for structure and structural dynamics of these macromolecules. Here, we present a detailed model to describe the dynamic properties of the amide I a...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2011-05, Vol.115 (18), p.5392-5401
Main Authors: Dijkstra, Arend G, Jansen, Thomas la Cour, Knoester, Jasper
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The amide vibrational modes play an important role in energy transport and relaxation in polypeptides and proteins and provide us with spectral markers for structure and structural dynamics of these macromolecules. Here, we present a detailed model to describe the dynamic properties of the amide I and amide II modes and the resulting linear and nonlinear spectra. These two modes have large oscillator strengths, and their mutual coupling plays an important role in their relaxation. Using first-principles calculations of NMA-d 7 and a dipeptide in a fluctuating bath described by molecular dynamics simulations, we model the frequencies of the local vibrations as well as the coupling between them. Both the coherent couplings and the fluctuations induced by contact with their environment are taken into account. We apply the resulting model of interacting fluctuating oscillators to study the collective vibrations and the partially coherent transport of vibrational energy through a model α-helix. We find that the instantaneous vibrations are delocalized over a few (up to four) amide units, while the coherences in the helix survive for 0.5−1 ps, leading to coherent transport on a similar time scale.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp109431a