Loading…
Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model
We consider the diffusion of molecules in a one-dimensional medium consisting of a large number of cells separated from the extra-cellular space by permeable membranes. The extra-cellular space is completely connected and allows unrestricted diffusion of the molecules. Furthermore, the molecules can...
Saved in:
Published in: | Bulletin of mathematical biology 2011-07, Vol.73 (7), p.1682-1694 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the diffusion of molecules in a one-dimensional medium consisting of a large number of cells separated from the extra-cellular space by permeable membranes. The extra-cellular space is completely connected and allows unrestricted diffusion of the molecules. Furthermore, the molecules can diffuse within a given cell, i.e., the intra-cellular space; however, direct diffusion from one cell to another cell cannot occur. There is a movement of molecules across the permeable membranes between the intra- and extra-cellular spaces. Molecules from one cell can cross the permeable membrane into the extra-cellular space, then diffuse through the extra-cellular space, and eventually enter the intra-cellular space of a second cell. Here, we develop a simple set of model equations to describe this phenomenon and obtain the solutions using an eigenfunction expansion. We show that the solutions obtained using this method are particularly convenient for interpreting data from experiments that use techniques from nuclear magnetic resonance imaging. |
---|---|
ISSN: | 0092-8240 1522-9602 |
DOI: | 10.1007/s11538-010-9589-1 |