Loading…

A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods

This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive science 2008-12, Vol.32 (8), p.1248-1284
Main Authors: Shiffrin, Richard M., Lee, Michael D., Kim, Woojae, Wagenmakers, Eric‐Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243
cites cdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243
container_end_page 1284
container_issue 8
container_start_page 1248
container_title Cognitive science
container_volume 32
creator Shiffrin, Richard M.
Lee, Michael D.
Kim, Woojae
Wagenmakers, Eric‐Jan
description This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.
doi_str_mv 10.1080/03640210802414826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867726084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ820979</ericid><sourcerecordid>1616046201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</originalsourceid><addsrcrecordid>eNqFkEtvEzEURi1ERUPhByAhZLFhNe31c-xliEILatVFi2A3csfXiqtJHOyZovx7HKV0AYuufK1z7kMfIe8YnDIwcAZCS-D7kksmDdcvyIwpxRrdgn1JZnveVEEck9el3AOA1sK-IsecKaOkEjPyc05vpvyAO5oCvUoeB7p8cMPkxpg2dL7d5uT6FRb6I44r6ujtNKYc3UArvYiYXe5Xsa__z26HJboNvcJxlXx5Q46CGwq-fXxPyPcvy9vFRXN5ff51Mb9seikMNC5Yh-A5l31wxnlU1uk7E1TQ2hpmPAgO3oLXLGgMrbK-lkwJhsFqLsUJ-XSYWy_9NWEZu3UsPQ6D22CaSmd023INZm9-_Me8T1Pe1OO6mofkIJmpEjtIfU6lZAzdNse1y7uOQbdPuvsv9Nrz4XHwdLdG_9TxN-UqvD8ImGP_hJffDAfb2or1Af-OA-6eX9gtrs9vWgDxB289kzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215420418</pqid></control><display><type>article</type><title>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</title><source>Wiley</source><source>ERIC</source><creator>Shiffrin, Richard M. ; Lee, Michael D. ; Kim, Woojae ; Wagenmakers, Eric‐Jan</creator><creatorcontrib>Shiffrin, Richard M. ; Lee, Michael D. ; Kim, Woojae ; Wagenmakers, Eric‐Jan</creatorcontrib><description>This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.</description><identifier>ISSN: 0364-0213</identifier><identifier>EISSN: 1551-6709</identifier><identifier>DOI: 10.1080/03640210802414826</identifier><identifier>PMID: 21585453</identifier><identifier>CODEN: COGSD5</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Bayesian model selection ; Bayesian Statistics ; Cognition &amp; reasoning ; Cognitive Science ; Comparative Analysis ; Computation ; Evaluation Methods ; Generalization ; Hierarchical Bayesian modeling ; Individual Differences ; Memory ; Minimum description length ; Model evaluation ; Model mimicry ; Model selection ; Prediction ; Prequential analysis ; Probability ; Retention (Psychology) ; Sciences ; Simulation</subject><ispartof>Cognitive science, 2008-12, Vol.32 (8), p.1248-1284</ispartof><rights>2008 Cognitive Science Society, Inc.</rights><rights>Copyright Lawrence Erlbaum Associates, Inc. Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</citedby><cites>FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ820979$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21585453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiffrin, Richard M.</creatorcontrib><creatorcontrib>Lee, Michael D.</creatorcontrib><creatorcontrib>Kim, Woojae</creatorcontrib><creatorcontrib>Wagenmakers, Eric‐Jan</creatorcontrib><title>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</title><title>Cognitive science</title><addtitle>Cogn Sci</addtitle><description>This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.</description><subject>Bayesian analysis</subject><subject>Bayesian model selection</subject><subject>Bayesian Statistics</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive Science</subject><subject>Comparative Analysis</subject><subject>Computation</subject><subject>Evaluation Methods</subject><subject>Generalization</subject><subject>Hierarchical Bayesian modeling</subject><subject>Individual Differences</subject><subject>Memory</subject><subject>Minimum description length</subject><subject>Model evaluation</subject><subject>Model mimicry</subject><subject>Model selection</subject><subject>Prediction</subject><subject>Prequential analysis</subject><subject>Probability</subject><subject>Retention (Psychology)</subject><subject>Sciences</subject><subject>Simulation</subject><issn>0364-0213</issn><issn>1551-6709</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNqFkEtvEzEURi1ERUPhByAhZLFhNe31c-xliEILatVFi2A3csfXiqtJHOyZovx7HKV0AYuufK1z7kMfIe8YnDIwcAZCS-D7kksmDdcvyIwpxRrdgn1JZnveVEEck9el3AOA1sK-IsecKaOkEjPyc05vpvyAO5oCvUoeB7p8cMPkxpg2dL7d5uT6FRb6I44r6ujtNKYc3UArvYiYXe5Xsa__z26HJboNvcJxlXx5Q46CGwq-fXxPyPcvy9vFRXN5ff51Mb9seikMNC5Yh-A5l31wxnlU1uk7E1TQ2hpmPAgO3oLXLGgMrbK-lkwJhsFqLsUJ-XSYWy_9NWEZu3UsPQ6D22CaSmd023INZm9-_Me8T1Pe1OO6mofkIJmpEjtIfU6lZAzdNse1y7uOQbdPuvsv9Nrz4XHwdLdG_9TxN-UqvD8ImGP_hJffDAfb2or1Af-OA-6eX9gtrs9vWgDxB289kzU</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Shiffrin, Richard M.</creator><creator>Lee, Michael D.</creator><creator>Kim, Woojae</creator><creator>Wagenmakers, Eric‐Jan</creator><general>Blackwell Publishing Ltd</general><general>Psychology Press</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200812</creationdate><title>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</title><author>Shiffrin, Richard M. ; Lee, Michael D. ; Kim, Woojae ; Wagenmakers, Eric‐Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian analysis</topic><topic>Bayesian model selection</topic><topic>Bayesian Statistics</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive Science</topic><topic>Comparative Analysis</topic><topic>Computation</topic><topic>Evaluation Methods</topic><topic>Generalization</topic><topic>Hierarchical Bayesian modeling</topic><topic>Individual Differences</topic><topic>Memory</topic><topic>Minimum description length</topic><topic>Model evaluation</topic><topic>Model mimicry</topic><topic>Model selection</topic><topic>Prediction</topic><topic>Prequential analysis</topic><topic>Probability</topic><topic>Retention (Psychology)</topic><topic>Sciences</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiffrin, Richard M.</creatorcontrib><creatorcontrib>Lee, Michael D.</creatorcontrib><creatorcontrib>Kim, Woojae</creatorcontrib><creatorcontrib>Wagenmakers, Eric‐Jan</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cognitive science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiffrin, Richard M.</au><au>Lee, Michael D.</au><au>Kim, Woojae</au><au>Wagenmakers, Eric‐Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ820979</ericid><atitle>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</atitle><jtitle>Cognitive science</jtitle><addtitle>Cogn Sci</addtitle><date>2008-12</date><risdate>2008</risdate><volume>32</volume><issue>8</issue><spage>1248</spage><epage>1284</epage><pages>1248-1284</pages><issn>0364-0213</issn><eissn>1551-6709</eissn><coden>COGSD5</coden><abstract>This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21585453</pmid><doi>10.1080/03640210802414826</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-0213
ispartof Cognitive science, 2008-12, Vol.32 (8), p.1248-1284
issn 0364-0213
1551-6709
language eng
recordid cdi_proquest_miscellaneous_867726084
source Wiley; ERIC
subjects Bayesian analysis
Bayesian model selection
Bayesian Statistics
Cognition & reasoning
Cognitive Science
Comparative Analysis
Computation
Evaluation Methods
Generalization
Hierarchical Bayesian modeling
Individual Differences
Memory
Minimum description length
Model evaluation
Model mimicry
Model selection
Prediction
Prequential analysis
Probability
Retention (Psychology)
Sciences
Simulation
title A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Model%20Evaluation%20Approaches%20With%20a%20Tutorial%20on%20Hierarchical%20Bayesian%20Methods&rft.jtitle=Cognitive%20science&rft.au=Shiffrin,%20Richard%20M.&rft.date=2008-12&rft.volume=32&rft.issue=8&rft.spage=1248&rft.epage=1284&rft.pages=1248-1284&rft.issn=0364-0213&rft.eissn=1551-6709&rft.coden=COGSD5&rft_id=info:doi/10.1080/03640210802414826&rft_dat=%3Cproquest_cross%3E1616046201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215420418&rft_id=info:pmid/21585453&rft_ericid=EJ820979&rfr_iscdi=true