Loading…
A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and...
Saved in:
Published in: | Cognitive science 2008-12, Vol.32 (8), p.1248-1284 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243 |
---|---|
cites | cdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243 |
container_end_page | 1284 |
container_issue | 8 |
container_start_page | 1248 |
container_title | Cognitive science |
container_volume | 32 |
creator | Shiffrin, Richard M. Lee, Michael D. Kim, Woojae Wagenmakers, Eric‐Jan |
description | This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways. |
doi_str_mv | 10.1080/03640210802414826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867726084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ820979</ericid><sourcerecordid>1616046201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</originalsourceid><addsrcrecordid>eNqFkEtvEzEURi1ERUPhByAhZLFhNe31c-xliEILatVFi2A3csfXiqtJHOyZovx7HKV0AYuufK1z7kMfIe8YnDIwcAZCS-D7kksmDdcvyIwpxRrdgn1JZnveVEEck9el3AOA1sK-IsecKaOkEjPyc05vpvyAO5oCvUoeB7p8cMPkxpg2dL7d5uT6FRb6I44r6ujtNKYc3UArvYiYXe5Xsa__z26HJboNvcJxlXx5Q46CGwq-fXxPyPcvy9vFRXN5ff51Mb9seikMNC5Yh-A5l31wxnlU1uk7E1TQ2hpmPAgO3oLXLGgMrbK-lkwJhsFqLsUJ-XSYWy_9NWEZu3UsPQ6D22CaSmd023INZm9-_Me8T1Pe1OO6mofkIJmpEjtIfU6lZAzdNse1y7uOQbdPuvsv9Nrz4XHwdLdG_9TxN-UqvD8ImGP_hJffDAfb2or1Af-OA-6eX9gtrs9vWgDxB289kzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215420418</pqid></control><display><type>article</type><title>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</title><source>Wiley</source><source>ERIC</source><creator>Shiffrin, Richard M. ; Lee, Michael D. ; Kim, Woojae ; Wagenmakers, Eric‐Jan</creator><creatorcontrib>Shiffrin, Richard M. ; Lee, Michael D. ; Kim, Woojae ; Wagenmakers, Eric‐Jan</creatorcontrib><description>This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.</description><identifier>ISSN: 0364-0213</identifier><identifier>EISSN: 1551-6709</identifier><identifier>DOI: 10.1080/03640210802414826</identifier><identifier>PMID: 21585453</identifier><identifier>CODEN: COGSD5</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Bayesian model selection ; Bayesian Statistics ; Cognition & reasoning ; Cognitive Science ; Comparative Analysis ; Computation ; Evaluation Methods ; Generalization ; Hierarchical Bayesian modeling ; Individual Differences ; Memory ; Minimum description length ; Model evaluation ; Model mimicry ; Model selection ; Prediction ; Prequential analysis ; Probability ; Retention (Psychology) ; Sciences ; Simulation</subject><ispartof>Cognitive science, 2008-12, Vol.32 (8), p.1248-1284</ispartof><rights>2008 Cognitive Science Society, Inc.</rights><rights>Copyright Lawrence Erlbaum Associates, Inc. Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</citedby><cites>FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ820979$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21585453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiffrin, Richard M.</creatorcontrib><creatorcontrib>Lee, Michael D.</creatorcontrib><creatorcontrib>Kim, Woojae</creatorcontrib><creatorcontrib>Wagenmakers, Eric‐Jan</creatorcontrib><title>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</title><title>Cognitive science</title><addtitle>Cogn Sci</addtitle><description>This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.</description><subject>Bayesian analysis</subject><subject>Bayesian model selection</subject><subject>Bayesian Statistics</subject><subject>Cognition & reasoning</subject><subject>Cognitive Science</subject><subject>Comparative Analysis</subject><subject>Computation</subject><subject>Evaluation Methods</subject><subject>Generalization</subject><subject>Hierarchical Bayesian modeling</subject><subject>Individual Differences</subject><subject>Memory</subject><subject>Minimum description length</subject><subject>Model evaluation</subject><subject>Model mimicry</subject><subject>Model selection</subject><subject>Prediction</subject><subject>Prequential analysis</subject><subject>Probability</subject><subject>Retention (Psychology)</subject><subject>Sciences</subject><subject>Simulation</subject><issn>0364-0213</issn><issn>1551-6709</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNqFkEtvEzEURi1ERUPhByAhZLFhNe31c-xliEILatVFi2A3csfXiqtJHOyZovx7HKV0AYuufK1z7kMfIe8YnDIwcAZCS-D7kksmDdcvyIwpxRrdgn1JZnveVEEck9el3AOA1sK-IsecKaOkEjPyc05vpvyAO5oCvUoeB7p8cMPkxpg2dL7d5uT6FRb6I44r6ujtNKYc3UArvYiYXe5Xsa__z26HJboNvcJxlXx5Q46CGwq-fXxPyPcvy9vFRXN5ff51Mb9seikMNC5Yh-A5l31wxnlU1uk7E1TQ2hpmPAgO3oLXLGgMrbK-lkwJhsFqLsUJ-XSYWy_9NWEZu3UsPQ6D22CaSmd023INZm9-_Me8T1Pe1OO6mofkIJmpEjtIfU6lZAzdNse1y7uOQbdPuvsv9Nrz4XHwdLdG_9TxN-UqvD8ImGP_hJffDAfb2or1Af-OA-6eX9gtrs9vWgDxB289kzU</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Shiffrin, Richard M.</creator><creator>Lee, Michael D.</creator><creator>Kim, Woojae</creator><creator>Wagenmakers, Eric‐Jan</creator><general>Blackwell Publishing Ltd</general><general>Psychology Press</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200812</creationdate><title>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</title><author>Shiffrin, Richard M. ; Lee, Michael D. ; Kim, Woojae ; Wagenmakers, Eric‐Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bayesian analysis</topic><topic>Bayesian model selection</topic><topic>Bayesian Statistics</topic><topic>Cognition & reasoning</topic><topic>Cognitive Science</topic><topic>Comparative Analysis</topic><topic>Computation</topic><topic>Evaluation Methods</topic><topic>Generalization</topic><topic>Hierarchical Bayesian modeling</topic><topic>Individual Differences</topic><topic>Memory</topic><topic>Minimum description length</topic><topic>Model evaluation</topic><topic>Model mimicry</topic><topic>Model selection</topic><topic>Prediction</topic><topic>Prequential analysis</topic><topic>Probability</topic><topic>Retention (Psychology)</topic><topic>Sciences</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiffrin, Richard M.</creatorcontrib><creatorcontrib>Lee, Michael D.</creatorcontrib><creatorcontrib>Kim, Woojae</creatorcontrib><creatorcontrib>Wagenmakers, Eric‐Jan</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cognitive science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiffrin, Richard M.</au><au>Lee, Michael D.</au><au>Kim, Woojae</au><au>Wagenmakers, Eric‐Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ820979</ericid><atitle>A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods</atitle><jtitle>Cognitive science</jtitle><addtitle>Cogn Sci</addtitle><date>2008-12</date><risdate>2008</risdate><volume>32</volume><issue>8</issue><spage>1248</spage><epage>1284</epage><pages>1248-1284</pages><issn>0364-0213</issn><eissn>1551-6709</eissn><coden>COGSD5</coden><abstract>This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues that, although often useful in specific settings, most of these approaches are limited in their ability to give a general assessment of models. This article argues that hierarchical methods, generally, and hierarchical Bayesian methods, specifically, can provide a more thorough evaluation of models in the cognitive sciences. This article presents two worked examples of hierarchical Bayesian analyses to demonstrate how the approach addresses key questions of descriptive adequacy, parameter interference, prediction, and generalization in principled and coherent ways.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21585453</pmid><doi>10.1080/03640210802414826</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-0213 |
ispartof | Cognitive science, 2008-12, Vol.32 (8), p.1248-1284 |
issn | 0364-0213 1551-6709 |
language | eng |
recordid | cdi_proquest_miscellaneous_867726084 |
source | Wiley; ERIC |
subjects | Bayesian analysis Bayesian model selection Bayesian Statistics Cognition & reasoning Cognitive Science Comparative Analysis Computation Evaluation Methods Generalization Hierarchical Bayesian modeling Individual Differences Memory Minimum description length Model evaluation Model mimicry Model selection Prediction Prequential analysis Probability Retention (Psychology) Sciences Simulation |
title | A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Model%20Evaluation%20Approaches%20With%20a%20Tutorial%20on%20Hierarchical%20Bayesian%20Methods&rft.jtitle=Cognitive%20science&rft.au=Shiffrin,%20Richard%20M.&rft.date=2008-12&rft.volume=32&rft.issue=8&rft.spage=1248&rft.epage=1284&rft.pages=1248-1284&rft.issn=0364-0213&rft.eissn=1551-6709&rft.coden=COGSD5&rft_id=info:doi/10.1080/03640210802414826&rft_dat=%3Cproquest_cross%3E1616046201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-af9ae0d224cfa8ade59a6b8f5f669818d0320d90d61f6ef759dd611531ef96243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215420418&rft_id=info:pmid/21585453&rft_ericid=EJ820979&rfr_iscdi=true |