Loading…

Polymer Vesicles with a Red Cell-like Surface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence

Polymersomes are block copolymer‐based vesicles whose long circulation times or “stealth” in vivo coupled with the loading and controlled release of drugs, siRNA, and other compounds has made them attractive for delivery. A brushy corona of non‐ionic polyethylene glycol (PEG) likely contributes stea...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular rapid communications. 2010-01, Vol.31 (2), p.135-141
Main Authors: Christian, David A., Garbuzenko, Olga B., Minko, Tamara, Discher, Dennis E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3
cites cdi_FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3
container_end_page 141
container_issue 2
container_start_page 135
container_title Macromolecular rapid communications.
container_volume 31
creator Christian, David A.
Garbuzenko, Olga B.
Minko, Tamara
Discher, Dennis E.
description Polymersomes are block copolymer‐based vesicles whose long circulation times or “stealth” in vivo coupled with the loading and controlled release of drugs, siRNA, and other compounds has made them attractive for delivery. A brushy corona of non‐ionic polyethylene glycol (PEG) likely contributes stealth, but red blood cells (RBCs) possess a negatively charged glycocalyx and circulate much longer. Polyanionic block copolymers were therefore mixed into polymersomes which were also labeled with a near IR fluorophore to quantify biodistribution in live mice and excised organs. Charge shifts tissue distribution, and high resolution imaging of vesicles in blood capillaries further shows that organ cultures can provide deeper insight into microscale transport within tissue microenvironments. The surface charge of “stealth” polymersomes is tuned to mimic that of erythrocytes by incorporating an anionic diblock copolymer. The effect of varying surface charge on in vivo biodistribution is tracked by incorporation of a near‐infrared fluorophore (NIRF) into the polymersome membrane. This NIRF allows for the visualization of polymersomes in the microvasculature of freshly excised tissues.
doi_str_mv 10.1002/marc.200900589
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867728864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787078131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhiMEYmNw5Yh845Ty2Y5jh9sUsa1TO9AYcLRc50tn6iTDbjp620_HpaPitottWc_76LPfLHtLYUIB2IfOBDthABWAUNWz7JgKRnNeMfk8nYGxnHJeHmWvYvwJAKoA9jI7YlRUoJQ4zh6-DH7bYSDfMTrrMZJ7t74lhlxjQ2r0PvduheTrGFpjkdS3JizxI5k7G4aNiXb0JpBpZ5auXxLTN8T1ZOM2A7kJxq52l399V2hCPu3bYELynvlxCBgt9hZfZy9a4yO-edxPsm9nn27qi3z2-Xxan85yW4iiyhWTC2upkcxCKUzbAi_ogotGSSrTijI9iaPAQggLbVs2JWsUB9sYVbTS8JPs_d57F4ZfI8a17lyawHvT4zBGrUopmVJl8SQplQSpKKeJnOzJ9BkxBmz1XXCpka2moHf16F09-lBPCrx7VI-LDpsD_q-PBFR74N553D6h0_PT6_p_eb7PurjG34esCStdSi6F_nF1ruX8opiVUOtL_geyoKuj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787078131</pqid></control><display><type>article</type><title>Polymer Vesicles with a Red Cell-like Surface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Christian, David A. ; Garbuzenko, Olga B. ; Minko, Tamara ; Discher, Dennis E.</creator><creatorcontrib>Christian, David A. ; Garbuzenko, Olga B. ; Minko, Tamara ; Discher, Dennis E.</creatorcontrib><description>Polymersomes are block copolymer‐based vesicles whose long circulation times or “stealth” in vivo coupled with the loading and controlled release of drugs, siRNA, and other compounds has made them attractive for delivery. A brushy corona of non‐ionic polyethylene glycol (PEG) likely contributes stealth, but red blood cells (RBCs) possess a negatively charged glycocalyx and circulate much longer. Polyanionic block copolymers were therefore mixed into polymersomes which were also labeled with a near IR fluorophore to quantify biodistribution in live mice and excised organs. Charge shifts tissue distribution, and high resolution imaging of vesicles in blood capillaries further shows that organ cultures can provide deeper insight into microscale transport within tissue microenvironments. The surface charge of “stealth” polymersomes is tuned to mimic that of erythrocytes by incorporating an anionic diblock copolymer. The effect of varying surface charge on in vivo biodistribution is tracked by incorporation of a near‐infrared fluorophore (NIRF) into the polymersome membrane. This NIRF allows for the visualization of polymersomes in the microvasculature of freshly excised tissues.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.200900589</identifier><identifier>PMID: 21590885</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>biodistribution ; Biomedical materials ; Block copolymers ; charge ; Circulation ; Imaging ; In vivo testing ; In vivo tests ; near- infrared fluorescence ; self-assembly ; Surgical implants ; Vesicles</subject><ispartof>Macromolecular rapid communications., 2010-01, Vol.31 (2), p.135-141</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2010 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3</citedby><cites>FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21590885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christian, David A.</creatorcontrib><creatorcontrib>Garbuzenko, Olga B.</creatorcontrib><creatorcontrib>Minko, Tamara</creatorcontrib><creatorcontrib>Discher, Dennis E.</creatorcontrib><title>Polymer Vesicles with a Red Cell-like Surface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>Polymersomes are block copolymer‐based vesicles whose long circulation times or “stealth” in vivo coupled with the loading and controlled release of drugs, siRNA, and other compounds has made them attractive for delivery. A brushy corona of non‐ionic polyethylene glycol (PEG) likely contributes stealth, but red blood cells (RBCs) possess a negatively charged glycocalyx and circulate much longer. Polyanionic block copolymers were therefore mixed into polymersomes which were also labeled with a near IR fluorophore to quantify biodistribution in live mice and excised organs. Charge shifts tissue distribution, and high resolution imaging of vesicles in blood capillaries further shows that organ cultures can provide deeper insight into microscale transport within tissue microenvironments. The surface charge of “stealth” polymersomes is tuned to mimic that of erythrocytes by incorporating an anionic diblock copolymer. The effect of varying surface charge on in vivo biodistribution is tracked by incorporation of a near‐infrared fluorophore (NIRF) into the polymersome membrane. This NIRF allows for the visualization of polymersomes in the microvasculature of freshly excised tissues.</description><subject>biodistribution</subject><subject>Biomedical materials</subject><subject>Block copolymers</subject><subject>charge</subject><subject>Circulation</subject><subject>Imaging</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>near- infrared fluorescence</subject><subject>self-assembly</subject><subject>Surgical implants</subject><subject>Vesicles</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAYhiMEYmNw5Yh845Ty2Y5jh9sUsa1TO9AYcLRc50tn6iTDbjp620_HpaPitottWc_76LPfLHtLYUIB2IfOBDthABWAUNWz7JgKRnNeMfk8nYGxnHJeHmWvYvwJAKoA9jI7YlRUoJQ4zh6-DH7bYSDfMTrrMZJ7t74lhlxjQ2r0PvduheTrGFpjkdS3JizxI5k7G4aNiXb0JpBpZ5auXxLTN8T1ZOM2A7kJxq52l399V2hCPu3bYELynvlxCBgt9hZfZy9a4yO-edxPsm9nn27qi3z2-Xxan85yW4iiyhWTC2upkcxCKUzbAi_ogotGSSrTijI9iaPAQggLbVs2JWsUB9sYVbTS8JPs_d57F4ZfI8a17lyawHvT4zBGrUopmVJl8SQplQSpKKeJnOzJ9BkxBmz1XXCpka2moHf16F09-lBPCrx7VI-LDpsD_q-PBFR74N553D6h0_PT6_p_eb7PurjG34esCStdSi6F_nF1ruX8opiVUOtL_geyoKuj</recordid><startdate>20100118</startdate><enddate>20100118</enddate><creator>Christian, David A.</creator><creator>Garbuzenko, Olga B.</creator><creator>Minko, Tamara</creator><creator>Discher, Dennis E.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20100118</creationdate><title>Polymer Vesicles with a Red Cell-like Surface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence</title><author>Christian, David A. ; Garbuzenko, Olga B. ; Minko, Tamara ; Discher, Dennis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>biodistribution</topic><topic>Biomedical materials</topic><topic>Block copolymers</topic><topic>charge</topic><topic>Circulation</topic><topic>Imaging</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>near- infrared fluorescence</topic><topic>self-assembly</topic><topic>Surgical implants</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christian, David A.</creatorcontrib><creatorcontrib>Garbuzenko, Olga B.</creatorcontrib><creatorcontrib>Minko, Tamara</creatorcontrib><creatorcontrib>Discher, Dennis E.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christian, David A.</au><au>Garbuzenko, Olga B.</au><au>Minko, Tamara</au><au>Discher, Dennis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer Vesicles with a Red Cell-like Surface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2010-01-18</date><risdate>2010</risdate><volume>31</volume><issue>2</issue><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Polymersomes are block copolymer‐based vesicles whose long circulation times or “stealth” in vivo coupled with the loading and controlled release of drugs, siRNA, and other compounds has made them attractive for delivery. A brushy corona of non‐ionic polyethylene glycol (PEG) likely contributes stealth, but red blood cells (RBCs) possess a negatively charged glycocalyx and circulate much longer. Polyanionic block copolymers were therefore mixed into polymersomes which were also labeled with a near IR fluorophore to quantify biodistribution in live mice and excised organs. Charge shifts tissue distribution, and high resolution imaging of vesicles in blood capillaries further shows that organ cultures can provide deeper insight into microscale transport within tissue microenvironments. The surface charge of “stealth” polymersomes is tuned to mimic that of erythrocytes by incorporating an anionic diblock copolymer. The effect of varying surface charge on in vivo biodistribution is tracked by incorporation of a near‐infrared fluorophore (NIRF) into the polymersome membrane. This NIRF allows for the visualization of polymersomes in the microvasculature of freshly excised tissues.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21590885</pmid><doi>10.1002/marc.200900589</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2010-01, Vol.31 (2), p.135-141
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_867728864
source Wiley-Blackwell Read & Publish Collection
subjects biodistribution
Biomedical materials
Block copolymers
charge
Circulation
Imaging
In vivo testing
In vivo tests
near- infrared fluorescence
self-assembly
Surgical implants
Vesicles
title Polymer Vesicles with a Red Cell-like Surface Charge: Microvascular Imaging and in vivo Tracking with Near-Infrared Fluorescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20Vesicles%20with%20a%20Red%20Cell-like%20Surface%20Charge:%20Microvascular%20Imaging%20and%20in%20vivo%20Tracking%20with%20Near-Infrared%20Fluorescence&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Christian,%20David%20A.&rft.date=2010-01-18&rft.volume=31&rft.issue=2&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.200900589&rft_dat=%3Cproquest_cross%3E787078131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4549-827bcc1a72c065aff0341b35d87175d8e71593e5e455c0ff6d62d830cda84f7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787078131&rft_id=info:pmid/21590885&rfr_iscdi=true