Loading…

A new imputation method for incomplete binary data

In data analysis problems where the data are represented by vectors of real numbers, it is often the case that some of the data-points will have “missing values”, meaning that one or more of the entries of the vector that describes the data-point is not observed. In this paper, we propose a new appr...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2011-06, Vol.159 (10), p.1040-1047
Main Authors: Subasi, Munevver Mine, Subasi, Ersoy, Anthony, Martin, Hammer, Peter L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693
cites cdi_FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693
container_end_page 1047
container_issue 10
container_start_page 1040
container_title Discrete Applied Mathematics
container_volume 159
creator Subasi, Munevver Mine
Subasi, Ersoy
Anthony, Martin
Hammer, Peter L.
description In data analysis problems where the data are represented by vectors of real numbers, it is often the case that some of the data-points will have “missing values”, meaning that one or more of the entries of the vector that describes the data-point is not observed. In this paper, we propose a new approach to the imputation of missing binary values. The technique we introduce employs a “similarity measure” introduced by Anthony and Hammer (2006)  [1]. We compare experimentally the performance of our technique with ones based on the usual Hamming distance measure and multiple imputation.
doi_str_mv 10.1016/j.dam.2011.01.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867738225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X11000503</els_id><sourcerecordid>867738225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG-5eWpN0mya4GlZ_AcLXhS8hTSdYJa2qUlW8dubZT0LD4aB3xvmPYSuKakpoeJ2V_dmrBmhtCZFjJ-gBZUtq0Tb0lO0KIyoGJXv5-gipR0hhJZtgdgaT_CN_Tjvs8k-THiE_BF67ELEfrJhnAfIgDs_mfiDe5PNJTpzZkhw9TeX6O3h_nXzVG1fHp83621lm5blShDHuCLcOsstl00Hxq2aRgkrFDeEOZAWVMc7pZzkvYOWd21vKVglWiNUs0Q3x7tzDJ97SFmPPlkYBjNB2CctS7RGMrYqJD2SNoaUIjg9Rz-WfzUl-lCP3ulSjz7Uo0kR48Vzd_RAifDlIepkPUwWeh_BZt0H_4_7F_pSbQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867738225</pqid></control><display><type>article</type><title>A new imputation method for incomplete binary data</title><source>ScienceDirect Journals</source><creator>Subasi, Munevver Mine ; Subasi, Ersoy ; Anthony, Martin ; Hammer, Peter L.</creator><creatorcontrib>Subasi, Munevver Mine ; Subasi, Ersoy ; Anthony, Martin ; Hammer, Peter L.</creatorcontrib><description>In data analysis problems where the data are represented by vectors of real numbers, it is often the case that some of the data-points will have “missing values”, meaning that one or more of the entries of the vector that describes the data-point is not observed. In this paper, we propose a new approach to the imputation of missing binary values. The technique we introduce employs a “similarity measure” introduced by Anthony and Hammer (2006)  [1]. We compare experimentally the performance of our technique with ones based on the usual Hamming distance measure and multiple imputation.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2011.01.024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boolean similarity measure ; Imputation</subject><ispartof>Discrete Applied Mathematics, 2011-06, Vol.159 (10), p.1040-1047</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693</citedby><cites>FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Subasi, Munevver Mine</creatorcontrib><creatorcontrib>Subasi, Ersoy</creatorcontrib><creatorcontrib>Anthony, Martin</creatorcontrib><creatorcontrib>Hammer, Peter L.</creatorcontrib><title>A new imputation method for incomplete binary data</title><title>Discrete Applied Mathematics</title><description>In data analysis problems where the data are represented by vectors of real numbers, it is often the case that some of the data-points will have “missing values”, meaning that one or more of the entries of the vector that describes the data-point is not observed. In this paper, we propose a new approach to the imputation of missing binary values. The technique we introduce employs a “similarity measure” introduced by Anthony and Hammer (2006)  [1]. We compare experimentally the performance of our technique with ones based on the usual Hamming distance measure and multiple imputation.</description><subject>Boolean similarity measure</subject><subject>Imputation</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG-5eWpN0mya4GlZ_AcLXhS8hTSdYJa2qUlW8dubZT0LD4aB3xvmPYSuKakpoeJ2V_dmrBmhtCZFjJ-gBZUtq0Tb0lO0KIyoGJXv5-gipR0hhJZtgdgaT_CN_Tjvs8k-THiE_BF67ELEfrJhnAfIgDs_mfiDe5PNJTpzZkhw9TeX6O3h_nXzVG1fHp83621lm5blShDHuCLcOsstl00Hxq2aRgkrFDeEOZAWVMc7pZzkvYOWd21vKVglWiNUs0Q3x7tzDJ97SFmPPlkYBjNB2CctS7RGMrYqJD2SNoaUIjg9Rz-WfzUl-lCP3ulSjz7Uo0kR48Vzd_RAifDlIepkPUwWeh_BZt0H_4_7F_pSbQQ</recordid><startdate>20110628</startdate><enddate>20110628</enddate><creator>Subasi, Munevver Mine</creator><creator>Subasi, Ersoy</creator><creator>Anthony, Martin</creator><creator>Hammer, Peter L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110628</creationdate><title>A new imputation method for incomplete binary data</title><author>Subasi, Munevver Mine ; Subasi, Ersoy ; Anthony, Martin ; Hammer, Peter L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boolean similarity measure</topic><topic>Imputation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subasi, Munevver Mine</creatorcontrib><creatorcontrib>Subasi, Ersoy</creatorcontrib><creatorcontrib>Anthony, Martin</creatorcontrib><creatorcontrib>Hammer, Peter L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subasi, Munevver Mine</au><au>Subasi, Ersoy</au><au>Anthony, Martin</au><au>Hammer, Peter L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new imputation method for incomplete binary data</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011-06-28</date><risdate>2011</risdate><volume>159</volume><issue>10</issue><spage>1040</spage><epage>1047</epage><pages>1040-1047</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In data analysis problems where the data are represented by vectors of real numbers, it is often the case that some of the data-points will have “missing values”, meaning that one or more of the entries of the vector that describes the data-point is not observed. In this paper, we propose a new approach to the imputation of missing binary values. The technique we introduce employs a “similarity measure” introduced by Anthony and Hammer (2006)  [1]. We compare experimentally the performance of our technique with ones based on the usual Hamming distance measure and multiple imputation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2011.01.024</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2011-06, Vol.159 (10), p.1040-1047
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_867738225
source ScienceDirect Journals
subjects Boolean similarity measure
Imputation
title A new imputation method for incomplete binary data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20imputation%20method%20for%20incomplete%20binary%20data&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Subasi,%20Munevver%20Mine&rft.date=2011-06-28&rft.volume=159&rft.issue=10&rft.spage=1040&rft.epage=1047&rft.pages=1040-1047&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2011.01.024&rft_dat=%3Cproquest_cross%3E867738225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-60f24904cfc4c483beaf53396c694a02fe8ce9b4b99f84dfe74b7dc1ec967a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867738225&rft_id=info:pmid/&rfr_iscdi=true