Loading…

Effect of trans-10, cis-12 conjugated linoleic acid on performance, adipose depot weights, and liver weight in early-lactation dairy cows

In feeding practice, conjugated linoleic acid (CLA) supplements are used to decrease milk fat excretion in early-lactation dairy cows to save energy to counteract the physiological negative energy balance. The present study was conducted to examine the effects of CLA on energy metabolism, changes in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2011-06, Vol.94 (6), p.2859-2870
Main Authors: von Soosten, D., Meyer, U., Weber, E.M., Rehage, J., Flachowsky, G., Dänicke, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In feeding practice, conjugated linoleic acid (CLA) supplements are used to decrease milk fat excretion in early-lactation dairy cows to save energy to counteract the physiological negative energy balance. The present study was conducted to examine the effects of CLA on energy metabolism, changes in liver weight, and the weight of different adipose depots during early lactation. Primiparous lactating German Holstein cows (n=25) were divided into 5 groups and each group contained 5 animals. The experiment started 21 d prepartum and continued until 105 d in milk (DIM). Cows were slaughtered at 1, 42, and 105 DIM. The experiment was divided into a prepartum period (21 d prepartum until calving), period 1 (1 until 42 DIM), and period 2 (>42 until 105 DIM). In the prepartum period, all animals were housed together and fed the same diet with no CLA supplementation. At 1 DIM, an initial group, with no CLA supplementation, was slaughtered. The 20 remaining cows were assigned to 2 diets. One group received 100g/d of a control fat supplement (CON; n=10) and the other group 100g/d of a CLA supplement (CLA; n=10) from 1 DIM until slaughter. Five cows of each feeding group were slaughtered after 42 DIM and the remaining animals after 105 DIM. The CLA supplement contained approximately 10% each of trans-10, cis-12 CLA and cis-9, trans-11 CLA. During the slaughter process the empty body weight was recorded and the omental, mesenteric, retroperitoneal, and s.c. adipose depots, as well as the liver, were dissected and weighed. The CLA treatment decreased milk fat content in period 1 (14.1%). In period 2, milk fat content (25.4%) and yield (17.1%) were lower in the CLA group. No effect of CLA on milk yield was observed. The net energy intake, milk energy output, and the calculated energy balance remained unchanged by CLA supplementation. No effect of CLA on the weights of liver, omental, mesenteric, or s.c. adipose depots was observed when related to empty body weight. Liver weight increased with DIM, whereas the retroperitoneal adipose depot weight decreased at the same time. Compared with the initial group, the retroperitoneal adipose depot weight for control animals slaughtered after 42 DIM was decreased (47.7%); however, for the CLA group slaughtered after 42 DIM, a trend to a lower retroperitoneal adipose depot weight (34.0%) was observed. This suggests a CLA-induced deceleration of mobilization of the retroperitoneal adipose depot during the first 42 DIM.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2010-3851