Loading…

Homogeneous Fluorescence-Based Immunoassay Detects Antigens Within 90 Seconds

Homogeneous immunoassays are prevalent tools for the detection of antigens. The major advantage over heterogeneous immunoassays is the absence of numerous incubation and washing steps, reducing the assay time and allowing rapid on-site detection of antigens (e.g., toxins and pollutants). The simple...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2011-06, Vol.83 (11), p.4281-4287
Main Authors: Kreisig, Thomas, Hoffmann, Ralf, Zuchner, Thole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Homogeneous immunoassays are prevalent tools for the detection of antigens. The major advantage over heterogeneous immunoassays is the absence of numerous incubation and washing steps, reducing the assay time and allowing rapid on-site detection of antigens (e.g., toxins and pollutants). The simple experimental setup of a homogeneous immunoassay also allows a robust analysis even when performed by non-laboratory-trained personnel. Here we present a homogeneous immunoassay for the rapid determination of antigens. As a proof of concept, a phosphorylation-specific anti-human tau monoclonal antibody was labeled with an acceptor and the corresponding peptide probe with a donor fluorophore. The analyte sample is spiked with a fixed amount of donor peptide before acceptor-labeled antibody is added leading to a donor fluorescence quenching. Thus the intensity of the fluorescence signal of the donor peptide probe depends on the concentration of the target antigen. The sequence of the donor peptide was optimized to lower its affinity to the antibody giving a higher response for the analyte antigen compared to the native epitope. This allowed a semiquantitative analysis of the antigen within only 90 s.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac200777h