Loading…

Classification of Thermal Patterns at Karst Springs and Cave Streams

Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types:...

Full description

Saved in:
Bibliographic Details
Published in:Ground water 2011-05, Vol.49 (3), p.324-335
Main Authors: Luhmann, Andrew J., Covington, Matthew D., Peters, Andrew J., Alexander, Scott C., Anger, Cale T., Green, Jeffrey A., Runkel, Anthony C., Alexander Jr, E. Calvin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3
cites cdi_FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3
container_end_page 335
container_issue 3
container_start_page 324
container_title Ground water
container_volume 49
creator Luhmann, Andrew J.
Covington, Matthew D.
Peters, Andrew J.
Alexander, Scott C.
Anger, Cale T.
Green, Jeffrey A.
Runkel, Anthony C.
Alexander Jr, E. Calvin
description Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.
doi_str_mv 10.1111/j.1745-6584.2010.00737.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869572167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>869572167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3</originalsourceid><addsrcrecordid>eNqNkUtvEzEUhS0EoqHwF5DFhtWk12OPHwsWVWgDagVIDZSd5fFcw4R5FHtS0n-P05QsWNUbW9ffOdI9hxDKYM7yOVnPmRJVISst5iXkKYDiar59QmaHj6dkBsBUIaT6fkRepLQGAG7APCdHJUhZGiFm5P2icym1ofVuaseBjoGufmLsXUe_uGnCOCTqJnrhYpro1U1shx95MDR04W6RXk0RXZ9ekmfBdQlfPdzH5Ov52Wrxobj8vPy4OL0snNBaFdr4RniltZZMVUoGFwAdgzo0AnmNovagtTGNA-ZLZMHUqEKjGPey4srzY_J273sTx98bTJPt2-Sx69yA4yZZLU2lSibVI0iupGFcZvLNf-R63MQhr2G14hUDwU2G9B7ycUwpYrA5id7FO8vA7hqxa7sL3u6Ct7tG7H0jdpulrx_8N3WPzUH4r4IMvNsDf9oO7x5tbJfXp6v8yvpir2_ThNuD3sVfNgehKnv9aWkrdmFWS_nNnvO_jNinkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873510439</pqid></control><display><type>article</type><title>Classification of Thermal Patterns at Karst Springs and Cave Streams</title><source>Wiley</source><creator>Luhmann, Andrew J. ; Covington, Matthew D. ; Peters, Andrew J. ; Alexander, Scott C. ; Anger, Cale T. ; Green, Jeffrey A. ; Runkel, Anthony C. ; Alexander Jr, E. Calvin</creator><creatorcontrib>Luhmann, Andrew J. ; Covington, Matthew D. ; Peters, Andrew J. ; Alexander, Scott C. ; Anger, Cale T. ; Green, Jeffrey A. ; Runkel, Anthony C. ; Alexander Jr, E. Calvin</creatorcontrib><description>Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/j.1745-6584.2010.00737.x</identifier><identifier>PMID: 20662944</identifier><identifier>CODEN: GRWAAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Caves ; Classification ; Creeks &amp; streams ; Geologic Sediments ; Groundwater ; Groundwater recharge ; Heat transfer ; Karst ; Minnesota ; Rivers ; Springs ; Streams ; Temperature ; Water Cycle ; Water Movements</subject><ispartof>Ground water, 2011-05, Vol.49 (3), p.324-335</ispartof><rights>Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association</rights><rights>Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.</rights><rights>Copyright Ground Water Publishing Company May/Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3</citedby><cites>FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20662944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luhmann, Andrew J.</creatorcontrib><creatorcontrib>Covington, Matthew D.</creatorcontrib><creatorcontrib>Peters, Andrew J.</creatorcontrib><creatorcontrib>Alexander, Scott C.</creatorcontrib><creatorcontrib>Anger, Cale T.</creatorcontrib><creatorcontrib>Green, Jeffrey A.</creatorcontrib><creatorcontrib>Runkel, Anthony C.</creatorcontrib><creatorcontrib>Alexander Jr, E. Calvin</creatorcontrib><title>Classification of Thermal Patterns at Karst Springs and Cave Streams</title><title>Ground water</title><addtitle>Ground Water</addtitle><description>Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.</description><subject>Aquifers</subject><subject>Caves</subject><subject>Classification</subject><subject>Creeks &amp; streams</subject><subject>Geologic Sediments</subject><subject>Groundwater</subject><subject>Groundwater recharge</subject><subject>Heat transfer</subject><subject>Karst</subject><subject>Minnesota</subject><subject>Rivers</subject><subject>Springs</subject><subject>Streams</subject><subject>Temperature</subject><subject>Water Cycle</subject><subject>Water Movements</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUtvEzEUhS0EoqHwF5DFhtWk12OPHwsWVWgDagVIDZSd5fFcw4R5FHtS0n-P05QsWNUbW9ffOdI9hxDKYM7yOVnPmRJVISst5iXkKYDiar59QmaHj6dkBsBUIaT6fkRepLQGAG7APCdHJUhZGiFm5P2icym1ofVuaseBjoGufmLsXUe_uGnCOCTqJnrhYpro1U1shx95MDR04W6RXk0RXZ9ekmfBdQlfPdzH5Ov52Wrxobj8vPy4OL0snNBaFdr4RniltZZMVUoGFwAdgzo0AnmNovagtTGNA-ZLZMHUqEKjGPey4srzY_J273sTx98bTJPt2-Sx69yA4yZZLU2lSibVI0iupGFcZvLNf-R63MQhr2G14hUDwU2G9B7ycUwpYrA5id7FO8vA7hqxa7sL3u6Ct7tG7H0jdpulrx_8N3WPzUH4r4IMvNsDf9oO7x5tbJfXp6v8yvpir2_ThNuD3sVfNgehKnv9aWkrdmFWS_nNnvO_jNinkw</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Luhmann, Andrew J.</creator><creator>Covington, Matthew D.</creator><creator>Peters, Andrew J.</creator><creator>Alexander, Scott C.</creator><creator>Anger, Cale T.</creator><creator>Green, Jeffrey A.</creator><creator>Runkel, Anthony C.</creator><creator>Alexander Jr, E. Calvin</creator><general>Blackwell Publishing Ltd</general><general>Ground Water Publishing Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201105</creationdate><title>Classification of Thermal Patterns at Karst Springs and Cave Streams</title><author>Luhmann, Andrew J. ; Covington, Matthew D. ; Peters, Andrew J. ; Alexander, Scott C. ; Anger, Cale T. ; Green, Jeffrey A. ; Runkel, Anthony C. ; Alexander Jr, E. Calvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aquifers</topic><topic>Caves</topic><topic>Classification</topic><topic>Creeks &amp; streams</topic><topic>Geologic Sediments</topic><topic>Groundwater</topic><topic>Groundwater recharge</topic><topic>Heat transfer</topic><topic>Karst</topic><topic>Minnesota</topic><topic>Rivers</topic><topic>Springs</topic><topic>Streams</topic><topic>Temperature</topic><topic>Water Cycle</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luhmann, Andrew J.</creatorcontrib><creatorcontrib>Covington, Matthew D.</creatorcontrib><creatorcontrib>Peters, Andrew J.</creatorcontrib><creatorcontrib>Alexander, Scott C.</creatorcontrib><creatorcontrib>Anger, Cale T.</creatorcontrib><creatorcontrib>Green, Jeffrey A.</creatorcontrib><creatorcontrib>Runkel, Anthony C.</creatorcontrib><creatorcontrib>Alexander Jr, E. Calvin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luhmann, Andrew J.</au><au>Covington, Matthew D.</au><au>Peters, Andrew J.</au><au>Alexander, Scott C.</au><au>Anger, Cale T.</au><au>Green, Jeffrey A.</au><au>Runkel, Anthony C.</au><au>Alexander Jr, E. Calvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Thermal Patterns at Karst Springs and Cave Streams</atitle><jtitle>Ground water</jtitle><addtitle>Ground Water</addtitle><date>2011-05</date><risdate>2011</risdate><volume>49</volume><issue>3</issue><spage>324</spage><epage>335</epage><pages>324-335</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><coden>GRWAAP</coden><abstract>Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20662944</pmid><doi>10.1111/j.1745-6584.2010.00737.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-467X
ispartof Ground water, 2011-05, Vol.49 (3), p.324-335
issn 0017-467X
1745-6584
language eng
recordid cdi_proquest_miscellaneous_869572167
source Wiley
subjects Aquifers
Caves
Classification
Creeks & streams
Geologic Sediments
Groundwater
Groundwater recharge
Heat transfer
Karst
Minnesota
Rivers
Springs
Streams
Temperature
Water Cycle
Water Movements
title Classification of Thermal Patterns at Karst Springs and Cave Streams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Thermal%20Patterns%20at%20Karst%20Springs%20and%20Cave%20Streams&rft.jtitle=Ground%20water&rft.au=Luhmann,%20Andrew%20J.&rft.date=2011-05&rft.volume=49&rft.issue=3&rft.spage=324&rft.epage=335&rft.pages=324-335&rft.issn=0017-467X&rft.eissn=1745-6584&rft.coden=GRWAAP&rft_id=info:doi/10.1111/j.1745-6584.2010.00737.x&rft_dat=%3Cproquest_cross%3E869572167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4887-89cd4c7888617576faf0ea10bfd4e3be4bc08899da01c2e1f9be7fd713c6537c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873510439&rft_id=info:pmid/20662944&rfr_iscdi=true