Loading…

Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms

Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accor...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2010-09, Vol.398 (1), p.349-356
Main Authors: Date, Amol, Pasini, Patrizia, Daunert, Sylvia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accordingly, they have been employed in various environmental and clinical applications. The use of spore-based sensing systems offers the unique advantage of long-term preservation of the sensing cells by taking advantage of the environmental resistance and ruggedness of bacterial spores. In this work, we have incorporated spore-based whole-cell sensing systems into centrifugal compact disk (CD) microfluidic platforms in order to develop a portable sensing system, which should enable the use of these hardy sensors for fast on-field analysis of compounds of interest. For that, we have employed two spore-based sensing systems for the detection of arsenite and zinc, respectively, and evaluated their analytical performance in the miniaturized microfluidic format. Furthermore, we have tested environmental and clinical samples on the CD microfluidic platforms using the spore-based sensors. Germination of spores and quantitative response to the analyte could be obtained in 2.5-3 h, depending on the sensing system, with detection limits of 1 × 10⁻⁷ M for arsenite and 1 × 10⁻⁶ M for zinc in both serum and fresh water samples. Incorporation of spore-based whole-cell biosensing systems on microfluidic platforms enabled the rapid and sensitive detection of the analytes and is expected to facilitate the on-site use of such sensing systems.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-010-3930-2