Loading…
Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase
Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Sta...
Saved in:
Published in: | Biotechnology progress 2011-03, Vol.27 (2), p.351-359 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363 |
---|---|
cites | cdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363 |
container_end_page | 359 |
container_issue | 2 |
container_start_page | 351 |
container_title | Biotechnology progress |
container_volume | 27 |
creator | Santa-Maria, Monica C. Yencho, Craig G. Haigler, Candace H. Thompson, William F. Kelly, Robert M. Sosinski, Bryon |
description | Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 |
doi_str_mv | 10.1002/btpr.573 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869590124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861789136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</originalsourceid><addsrcrecordid>eNqN0M1u1DAQB3ALUdGlIPEEKBcElxQnTvxxhAoWUFUQLHC0Jt5J15AvPF61-1i8SJ8Jt5uWExInX37-z8yfsScFPy44L182cQrHtRL32KKoS55LLsR9ttCqlrkyQh-yh0Q_OOeay_IBOywLIWul5YLBlwjBbTLCrs2nMDok8sN55ocsBhjoHAfvMrpAjNk0RohjFsYxUoaXU5gtZJvdhCFuMPTjtPFd-nH1O4d-1wHhI3bQQkf4eH6P2Ne3b1Yn7_LTj8v3J69Oc1eVXOQOwTSVcY0GpTiC1rpBXgO24GqTVjdSVa6tagWtlFw1Yt1I0a45ClNzIcURe77PTVf82iJF23ty2HUw4Lglq6VJOUVZ_YcslDbFTeaLvXRhJArY2in4HsLOFtxeN2-vm7ep-USfzqHbpsf1HbytOoFnMwBy0LWpXefpr6u4qaTSyeV7d-E73P1zoH29-vR5P3j2niJe3nkIP61UQtX2-9nScv1hqVffzuxS_AGEjKvt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861789136</pqid></control><display><type>article</type><title>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Santa-Maria, Monica C. ; Yencho, Craig G. ; Haigler, Candace H. ; Thompson, William F. ; Kelly, Robert M. ; Sosinski, Bryon</creator><creatorcontrib>Santa-Maria, Monica C. ; Yencho, Craig G. ; Haigler, Candace H. ; Thompson, William F. ; Kelly, Robert M. ; Sosinski, Bryon</creatorcontrib><description>Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</description><identifier>ISSN: 8756-7938</identifier><identifier>ISSN: 1520-6033</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.573</identifier><identifier>PMID: 21365786</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Agrobacterium ; alpha-Amylases - genetics ; alpha-Amylases - physiology ; biofuels ; Biological and medical sciences ; Biotechnology ; Crops, Agricultural - genetics ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; hyperthermophilic enzymes ; Ipomoea batatas - genetics ; Ipomoea batatas - metabolism ; Plant Roots - metabolism ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - metabolism ; Solanum tuberosum ; Southeastern United States ; Starch - metabolism ; starch conversion ; sweet potato ; Thermotoga maritima ; Thermotoga maritima - enzymology ; transgenic plants</subject><ispartof>Biotechnology progress, 2011-03, Vol.27 (2), p.351-359</ispartof><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</citedby><cites>FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24094678$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21365786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santa-Maria, Monica C.</creatorcontrib><creatorcontrib>Yencho, Craig G.</creatorcontrib><creatorcontrib>Haigler, Candace H.</creatorcontrib><creatorcontrib>Thompson, William F.</creatorcontrib><creatorcontrib>Kelly, Robert M.</creatorcontrib><creatorcontrib>Sosinski, Bryon</creatorcontrib><title>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</description><subject>Agrobacterium</subject><subject>alpha-Amylases - genetics</subject><subject>alpha-Amylases - physiology</subject><subject>biofuels</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Crops, Agricultural - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>hyperthermophilic enzymes</subject><subject>Ipomoea batatas - genetics</subject><subject>Ipomoea batatas - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Solanum tuberosum</subject><subject>Southeastern United States</subject><subject>Starch - metabolism</subject><subject>starch conversion</subject><subject>sweet potato</subject><subject>Thermotoga maritima</subject><subject>Thermotoga maritima - enzymology</subject><subject>transgenic plants</subject><issn>8756-7938</issn><issn>1520-6033</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0M1u1DAQB3ALUdGlIPEEKBcElxQnTvxxhAoWUFUQLHC0Jt5J15AvPF61-1i8SJ8Jt5uWExInX37-z8yfsScFPy44L182cQrHtRL32KKoS55LLsR9ttCqlrkyQh-yh0Q_OOeay_IBOywLIWul5YLBlwjBbTLCrs2nMDok8sN55ocsBhjoHAfvMrpAjNk0RohjFsYxUoaXU5gtZJvdhCFuMPTjtPFd-nH1O4d-1wHhI3bQQkf4eH6P2Ne3b1Yn7_LTj8v3J69Oc1eVXOQOwTSVcY0GpTiC1rpBXgO24GqTVjdSVa6tagWtlFw1Yt1I0a45ClNzIcURe77PTVf82iJF23ty2HUw4Lglq6VJOUVZ_YcslDbFTeaLvXRhJArY2in4HsLOFtxeN2-vm7ep-USfzqHbpsf1HbytOoFnMwBy0LWpXefpr6u4qaTSyeV7d-E73P1zoH29-vR5P3j2niJe3nkIP61UQtX2-9nScv1hqVffzuxS_AGEjKvt</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Santa-Maria, Monica C.</creator><creator>Yencho, Craig G.</creator><creator>Haigler, Candace H.</creator><creator>Thompson, William F.</creator><creator>Kelly, Robert M.</creator><creator>Sosinski, Bryon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201103</creationdate><title>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</title><author>Santa-Maria, Monica C. ; Yencho, Craig G. ; Haigler, Candace H. ; Thompson, William F. ; Kelly, Robert M. ; Sosinski, Bryon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agrobacterium</topic><topic>alpha-Amylases - genetics</topic><topic>alpha-Amylases - physiology</topic><topic>biofuels</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Crops, Agricultural - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>hyperthermophilic enzymes</topic><topic>Ipomoea batatas - genetics</topic><topic>Ipomoea batatas - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Solanum tuberosum</topic><topic>Southeastern United States</topic><topic>Starch - metabolism</topic><topic>starch conversion</topic><topic>sweet potato</topic><topic>Thermotoga maritima</topic><topic>Thermotoga maritima - enzymology</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santa-Maria, Monica C.</creatorcontrib><creatorcontrib>Yencho, Craig G.</creatorcontrib><creatorcontrib>Haigler, Candace H.</creatorcontrib><creatorcontrib>Thompson, William F.</creatorcontrib><creatorcontrib>Kelly, Robert M.</creatorcontrib><creatorcontrib>Sosinski, Bryon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santa-Maria, Monica C.</au><au>Yencho, Craig G.</au><au>Haigler, Candace H.</au><au>Thompson, William F.</au><au>Kelly, Robert M.</au><au>Sosinski, Bryon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2011-03</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>351</spage><epage>359</epage><pages>351-359</pages><issn>8756-7938</issn><issn>1520-6033</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21365786</pmid><doi>10.1002/btpr.573</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2011-03, Vol.27 (2), p.351-359 |
issn | 8756-7938 1520-6033 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_869590124 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agrobacterium alpha-Amylases - genetics alpha-Amylases - physiology biofuels Biological and medical sciences Biotechnology Crops, Agricultural - genetics Fundamental and applied biological sciences. Psychology Hot Temperature hyperthermophilic enzymes Ipomoea batatas - genetics Ipomoea batatas - metabolism Plant Roots - metabolism Plants, Genetically Modified - enzymology Plants, Genetically Modified - metabolism Solanum tuberosum Southeastern United States Starch - metabolism starch conversion sweet potato Thermotoga maritima Thermotoga maritima - enzymology transgenic plants |
title | Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Starch%20self-processing%20in%20transgenic%20sweet%20potato%20roots%20expressing%20a%20hyperthermophilic%20%CE%B1-amylase&rft.jtitle=Biotechnology%20progress&rft.au=Santa-Maria,%20Monica%20C.&rft.date=2011-03&rft.volume=27&rft.issue=2&rft.spage=351&rft.epage=359&rft.pages=351-359&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.573&rft_dat=%3Cproquest_cross%3E861789136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861789136&rft_id=info:pmid/21365786&rfr_iscdi=true |