Loading…

Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase

Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Sta...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2011-03, Vol.27 (2), p.351-359
Main Authors: Santa-Maria, Monica C., Yencho, Craig G., Haigler, Candace H., Thompson, William F., Kelly, Robert M., Sosinski, Bryon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363
cites cdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363
container_end_page 359
container_issue 2
container_start_page 351
container_title Biotechnology progress
container_volume 27
creator Santa-Maria, Monica C.
Yencho, Craig G.
Haigler, Candace H.
Thompson, William F.
Kelly, Robert M.
Sosinski, Bryon
description Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011
doi_str_mv 10.1002/btpr.573
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869590124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861789136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</originalsourceid><addsrcrecordid>eNqN0M1u1DAQB3ALUdGlIPEEKBcElxQnTvxxhAoWUFUQLHC0Jt5J15AvPF61-1i8SJ8Jt5uWExInX37-z8yfsScFPy44L182cQrHtRL32KKoS55LLsR9ttCqlrkyQh-yh0Q_OOeay_IBOywLIWul5YLBlwjBbTLCrs2nMDok8sN55ocsBhjoHAfvMrpAjNk0RohjFsYxUoaXU5gtZJvdhCFuMPTjtPFd-nH1O4d-1wHhI3bQQkf4eH6P2Ne3b1Yn7_LTj8v3J69Oc1eVXOQOwTSVcY0GpTiC1rpBXgO24GqTVjdSVa6tagWtlFw1Yt1I0a45ClNzIcURe77PTVf82iJF23ty2HUw4Lglq6VJOUVZ_YcslDbFTeaLvXRhJArY2in4HsLOFtxeN2-vm7ep-USfzqHbpsf1HbytOoFnMwBy0LWpXefpr6u4qaTSyeV7d-E73P1zoH29-vR5P3j2niJe3nkIP61UQtX2-9nScv1hqVffzuxS_AGEjKvt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861789136</pqid></control><display><type>article</type><title>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Santa-Maria, Monica C. ; Yencho, Craig G. ; Haigler, Candace H. ; Thompson, William F. ; Kelly, Robert M. ; Sosinski, Bryon</creator><creatorcontrib>Santa-Maria, Monica C. ; Yencho, Craig G. ; Haigler, Candace H. ; Thompson, William F. ; Kelly, Robert M. ; Sosinski, Bryon</creatorcontrib><description>Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</description><identifier>ISSN: 8756-7938</identifier><identifier>ISSN: 1520-6033</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.573</identifier><identifier>PMID: 21365786</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Agrobacterium ; alpha-Amylases - genetics ; alpha-Amylases - physiology ; biofuels ; Biological and medical sciences ; Biotechnology ; Crops, Agricultural - genetics ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; hyperthermophilic enzymes ; Ipomoea batatas - genetics ; Ipomoea batatas - metabolism ; Plant Roots - metabolism ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - metabolism ; Solanum tuberosum ; Southeastern United States ; Starch - metabolism ; starch conversion ; sweet potato ; Thermotoga maritima ; Thermotoga maritima - enzymology ; transgenic plants</subject><ispartof>Biotechnology progress, 2011-03, Vol.27 (2), p.351-359</ispartof><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</citedby><cites>FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24094678$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21365786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santa-Maria, Monica C.</creatorcontrib><creatorcontrib>Yencho, Craig G.</creatorcontrib><creatorcontrib>Haigler, Candace H.</creatorcontrib><creatorcontrib>Thompson, William F.</creatorcontrib><creatorcontrib>Kelly, Robert M.</creatorcontrib><creatorcontrib>Sosinski, Bryon</creatorcontrib><title>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</description><subject>Agrobacterium</subject><subject>alpha-Amylases - genetics</subject><subject>alpha-Amylases - physiology</subject><subject>biofuels</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Crops, Agricultural - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>hyperthermophilic enzymes</subject><subject>Ipomoea batatas - genetics</subject><subject>Ipomoea batatas - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Solanum tuberosum</subject><subject>Southeastern United States</subject><subject>Starch - metabolism</subject><subject>starch conversion</subject><subject>sweet potato</subject><subject>Thermotoga maritima</subject><subject>Thermotoga maritima - enzymology</subject><subject>transgenic plants</subject><issn>8756-7938</issn><issn>1520-6033</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqN0M1u1DAQB3ALUdGlIPEEKBcElxQnTvxxhAoWUFUQLHC0Jt5J15AvPF61-1i8SJ8Jt5uWExInX37-z8yfsScFPy44L182cQrHtRL32KKoS55LLsR9ttCqlrkyQh-yh0Q_OOeay_IBOywLIWul5YLBlwjBbTLCrs2nMDok8sN55ocsBhjoHAfvMrpAjNk0RohjFsYxUoaXU5gtZJvdhCFuMPTjtPFd-nH1O4d-1wHhI3bQQkf4eH6P2Ne3b1Yn7_LTj8v3J69Oc1eVXOQOwTSVcY0GpTiC1rpBXgO24GqTVjdSVa6tagWtlFw1Yt1I0a45ClNzIcURe77PTVf82iJF23ty2HUw4Lglq6VJOUVZ_YcslDbFTeaLvXRhJArY2in4HsLOFtxeN2-vm7ep-USfzqHbpsf1HbytOoFnMwBy0LWpXefpr6u4qaTSyeV7d-E73P1zoH29-vR5P3j2niJe3nkIP61UQtX2-9nScv1hqVffzuxS_AGEjKvt</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Santa-Maria, Monica C.</creator><creator>Yencho, Craig G.</creator><creator>Haigler, Candace H.</creator><creator>Thompson, William F.</creator><creator>Kelly, Robert M.</creator><creator>Sosinski, Bryon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201103</creationdate><title>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</title><author>Santa-Maria, Monica C. ; Yencho, Craig G. ; Haigler, Candace H. ; Thompson, William F. ; Kelly, Robert M. ; Sosinski, Bryon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agrobacterium</topic><topic>alpha-Amylases - genetics</topic><topic>alpha-Amylases - physiology</topic><topic>biofuels</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Crops, Agricultural - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>hyperthermophilic enzymes</topic><topic>Ipomoea batatas - genetics</topic><topic>Ipomoea batatas - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Solanum tuberosum</topic><topic>Southeastern United States</topic><topic>Starch - metabolism</topic><topic>starch conversion</topic><topic>sweet potato</topic><topic>Thermotoga maritima</topic><topic>Thermotoga maritima - enzymology</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santa-Maria, Monica C.</creatorcontrib><creatorcontrib>Yencho, Craig G.</creatorcontrib><creatorcontrib>Haigler, Candace H.</creatorcontrib><creatorcontrib>Thompson, William F.</creatorcontrib><creatorcontrib>Kelly, Robert M.</creatorcontrib><creatorcontrib>Sosinski, Bryon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santa-Maria, Monica C.</au><au>Yencho, Craig G.</au><au>Haigler, Candace H.</au><au>Thompson, William F.</au><au>Kelly, Robert M.</au><au>Sosinski, Bryon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2011-03</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>351</spage><epage>359</epage><pages>351-359</pages><issn>8756-7938</issn><issn>1520-6033</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α‐amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens‐mediated transformation, to create a plant with the ability to self‐process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near‐term energy crop should be considered. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21365786</pmid><doi>10.1002/btpr.573</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2011-03, Vol.27 (2), p.351-359
issn 8756-7938
1520-6033
1520-6033
language eng
recordid cdi_proquest_miscellaneous_869590124
source Wiley-Blackwell Read & Publish Collection
subjects Agrobacterium
alpha-Amylases - genetics
alpha-Amylases - physiology
biofuels
Biological and medical sciences
Biotechnology
Crops, Agricultural - genetics
Fundamental and applied biological sciences. Psychology
Hot Temperature
hyperthermophilic enzymes
Ipomoea batatas - genetics
Ipomoea batatas - metabolism
Plant Roots - metabolism
Plants, Genetically Modified - enzymology
Plants, Genetically Modified - metabolism
Solanum tuberosum
Southeastern United States
Starch - metabolism
starch conversion
sweet potato
Thermotoga maritima
Thermotoga maritima - enzymology
transgenic plants
title Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Starch%20self-processing%20in%20transgenic%20sweet%20potato%20roots%20expressing%20a%20hyperthermophilic%20%CE%B1-amylase&rft.jtitle=Biotechnology%20progress&rft.au=Santa-Maria,%20Monica%20C.&rft.date=2011-03&rft.volume=27&rft.issue=2&rft.spage=351&rft.epage=359&rft.pages=351-359&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.573&rft_dat=%3Cproquest_cross%3E861789136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4203-cea9b49cb8a770ea888be05aefac590009674cf457af6607b3db63fd0e3950363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861789136&rft_id=info:pmid/21365786&rfr_iscdi=true