Loading…

Nanomaterial standards for efficacy and toxicity assessment

Decreased toxicity via selective delivery of cancer therapeutics to tumors has become a hallmark achievement of nanotechnology. In order to be optimally efficacious, a systemically administered nanomedicine must reach cancer cells in sufficient quantities to elicit a response and assume its active f...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2010-01, Vol.2 (1), p.99-112
Main Authors: Adiseshaiah, Pavan P., Hall, Jennifer B., McNeil, Scott E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decreased toxicity via selective delivery of cancer therapeutics to tumors has become a hallmark achievement of nanotechnology. In order to be optimally efficacious, a systemically administered nanomedicine must reach cancer cells in sufficient quantities to elicit a response and assume its active form within the tumor microenvironment (e.g., be taken up by cancer cells and release a toxic component once within the cytosol or nuclei). Most nanomedicines achieve selective tumor accumulation via the enhanced permeability and retention (EPR) effect or a combination of the EPR effect and active targeting to cellular receptors. Here, we review how the fundamental physicochemical properties of a nanomedicine (its size, charge, hydrophobicity, etc.) can dramatically affect its distribution to cancerous tissue, transport across vascular walls, and retention in tumors. We also discuss how nanoparticle characteristics such as stability in the blood and tumor, cleavability of covalently bound components, cancer cell uptake, and cytotoxicity contribute to efficacy once the nanoparticle has reached the tumor's interstitial space. We elaborate on how tumor vascularization and receptor expression vary depending on cancer type, stage of disease, site of implantation, and host species, and review studies which have demonstrated that these variations affect tumor response to nanomedicines. Finally, we show how knowledge of these properties (both of the nanoparticle and the cancer/tumor under study) can be used to design meaningful in vivo tests to evaluate nanoparticle efficacy. WIREs Nanomed Nanobiotechnol 2010 2 99–112 This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials
ISSN:1939-5116
1939-0041
1939-0041
DOI:10.1002/wnan.66