Loading…

Drying regime maps for particulate coatings

Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distri...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2010-11, Vol.56 (11), p.2769-2780
Main Authors: Cardinal, Christine M, Jung, Yoon Dong, Ahn, Kyung Hyun, Francis, L.F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3
cites cdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3
container_end_page 2780
container_issue 11
container_start_page 2769
container_title AIChE journal
container_volume 56
creator Cardinal, Christine M
Jung, Yoon Dong
Ahn, Kyung Hyun
Francis, L.F
description Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010
doi_str_mv 10.1002/aic.12190
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869800964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>869800964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</originalsourceid><addsrcrecordid>eNp90NFqFDEUBuAgCq7VC5_AQRAVmfacZDKZXJap1sJSQS1ehtPsyZI6u7Mms-i-vdGpvRD0KiR850_yC_EU4RgB5AlFf4wSLdwTC9SNqbUFfV8sAADrcoAPxaOcb8pOmk4uxJuzdIjbdZV4HTdcbWiXqzCmakdpin4_0MSVH2kqJj8WDwINmZ_crkfi6t3bz_37evnh_KI_XdZe6xZqUqDYXytD3QolrwAbdS1ZcmhMK8l61WJYmcZ2GDprpVdNMKxRaehYr1gdiZdz7i6N3_acJ7eJ2fMw0JbHfXZdazsA2zZFvvqvxHIhopIWCn3-F70Z92lb_uGM7qSy0NiCXs_IpzHnxMHtUtxQOjgE96tfV_p1v_st9sVtIGVPQ0i09THfDUilWgkGizuZ3fc48OHfge70ov-TXM8TMU_8426C0lfXGmW0-3J57vozbT72l0uni382-0Cjo3Uqr7j6JAEVlDTAUv9Pwb6dxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758239049</pqid></control><display><type>article</type><title>Drying regime maps for particulate coatings</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cardinal, Christine M ; Jung, Yoon Dong ; Ahn, Kyung Hyun ; Francis, L.F</creator><creatorcontrib>Cardinal, Christine M ; Jung, Yoon Dong ; Ahn, Kyung Hyun ; Francis, L.F</creatorcontrib><description>Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12190</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Brownian motion ; Chemical engineering ; Coatings ; colloids ; cryoSEM ; Diffusion ; Diffusion rate ; Drying ; Drying agents ; Evaporation ; Exact sciences and technology ; Liquid-liquid and fluid-solid mechanical separations ; Mathematical models ; Microstructure ; Peclet number ; Porosity ; Sedimentation ; Sedimentation &amp; deposition ; setting/sedimentation ; Settling</subject><ispartof>AIChE journal, 2010-11, Vol.56 (11), p.2769-2780</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</citedby><cites>FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23362071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardinal, Christine M</creatorcontrib><creatorcontrib>Jung, Yoon Dong</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><creatorcontrib>Francis, L.F</creatorcontrib><title>Drying regime maps for particulate coatings</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010</description><subject>Applied sciences</subject><subject>Brownian motion</subject><subject>Chemical engineering</subject><subject>Coatings</subject><subject>colloids</subject><subject>cryoSEM</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Drying</subject><subject>Drying agents</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Peclet number</subject><subject>Porosity</subject><subject>Sedimentation</subject><subject>Sedimentation &amp; deposition</subject><subject>setting/sedimentation</subject><subject>Settling</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90NFqFDEUBuAgCq7VC5_AQRAVmfacZDKZXJap1sJSQS1ehtPsyZI6u7Mms-i-vdGpvRD0KiR850_yC_EU4RgB5AlFf4wSLdwTC9SNqbUFfV8sAADrcoAPxaOcb8pOmk4uxJuzdIjbdZV4HTdcbWiXqzCmakdpin4_0MSVH2kqJj8WDwINmZ_crkfi6t3bz_37evnh_KI_XdZe6xZqUqDYXytD3QolrwAbdS1ZcmhMK8l61WJYmcZ2GDprpVdNMKxRaehYr1gdiZdz7i6N3_acJ7eJ2fMw0JbHfXZdazsA2zZFvvqvxHIhopIWCn3-F70Z92lb_uGM7qSy0NiCXs_IpzHnxMHtUtxQOjgE96tfV_p1v_st9sVtIGVPQ0i09THfDUilWgkGizuZ3fc48OHfge70ov-TXM8TMU_8426C0lfXGmW0-3J57vozbT72l0uni382-0Cjo3Uqr7j6JAEVlDTAUv9Pwb6dxA</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Cardinal, Christine M</creator><creator>Jung, Yoon Dong</creator><creator>Ahn, Kyung Hyun</creator><creator>Francis, L.F</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201011</creationdate><title>Drying regime maps for particulate coatings</title><author>Cardinal, Christine M ; Jung, Yoon Dong ; Ahn, Kyung Hyun ; Francis, L.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Brownian motion</topic><topic>Chemical engineering</topic><topic>Coatings</topic><topic>colloids</topic><topic>cryoSEM</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Drying</topic><topic>Drying agents</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Peclet number</topic><topic>Porosity</topic><topic>Sedimentation</topic><topic>Sedimentation &amp; deposition</topic><topic>setting/sedimentation</topic><topic>Settling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardinal, Christine M</creatorcontrib><creatorcontrib>Jung, Yoon Dong</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><creatorcontrib>Francis, L.F</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardinal, Christine M</au><au>Jung, Yoon Dong</au><au>Ahn, Kyung Hyun</au><au>Francis, L.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying regime maps for particulate coatings</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2010-11</date><risdate>2010</risdate><volume>56</volume><issue>11</issue><spage>2769</spage><epage>2780</epage><pages>2769-2780</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12190</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2010-11, Vol.56 (11), p.2769-2780
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_869800964
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Brownian motion
Chemical engineering
Coatings
colloids
cryoSEM
Diffusion
Diffusion rate
Drying
Drying agents
Evaporation
Exact sciences and technology
Liquid-liquid and fluid-solid mechanical separations
Mathematical models
Microstructure
Peclet number
Porosity
Sedimentation
Sedimentation & deposition
setting/sedimentation
Settling
title Drying regime maps for particulate coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T02%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20regime%20maps%20for%20particulate%20coatings&rft.jtitle=AIChE%20journal&rft.au=Cardinal,%20Christine%20M&rft.date=2010-11&rft.volume=56&rft.issue=11&rft.spage=2769&rft.epage=2780&rft.pages=2769-2780&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12190&rft_dat=%3Cproquest_cross%3E869800964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=758239049&rft_id=info:pmid/&rfr_iscdi=true