Loading…
Drying regime maps for particulate coatings
Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distri...
Saved in:
Published in: | AIChE journal 2010-11, Vol.56 (11), p.2769-2780 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3 |
container_end_page | 2780 |
container_issue | 11 |
container_start_page | 2769 |
container_title | AIChE journal |
container_volume | 56 |
creator | Cardinal, Christine M Jung, Yoon Dong Ahn, Kyung Hyun Francis, L.F |
description | Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010 |
doi_str_mv | 10.1002/aic.12190 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869800964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>869800964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</originalsourceid><addsrcrecordid>eNp90NFqFDEUBuAgCq7VC5_AQRAVmfacZDKZXJap1sJSQS1ehtPsyZI6u7Mms-i-vdGpvRD0KiR850_yC_EU4RgB5AlFf4wSLdwTC9SNqbUFfV8sAADrcoAPxaOcb8pOmk4uxJuzdIjbdZV4HTdcbWiXqzCmakdpin4_0MSVH2kqJj8WDwINmZ_crkfi6t3bz_37evnh_KI_XdZe6xZqUqDYXytD3QolrwAbdS1ZcmhMK8l61WJYmcZ2GDprpVdNMKxRaehYr1gdiZdz7i6N3_acJ7eJ2fMw0JbHfXZdazsA2zZFvvqvxHIhopIWCn3-F70Z92lb_uGM7qSy0NiCXs_IpzHnxMHtUtxQOjgE96tfV_p1v_st9sVtIGVPQ0i09THfDUilWgkGizuZ3fc48OHfge70ov-TXM8TMU_8426C0lfXGmW0-3J57vozbT72l0uni382-0Cjo3Uqr7j6JAEVlDTAUv9Pwb6dxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758239049</pqid></control><display><type>article</type><title>Drying regime maps for particulate coatings</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cardinal, Christine M ; Jung, Yoon Dong ; Ahn, Kyung Hyun ; Francis, L.F</creator><creatorcontrib>Cardinal, Christine M ; Jung, Yoon Dong ; Ahn, Kyung Hyun ; Francis, L.F</creatorcontrib><description>Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12190</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Brownian motion ; Chemical engineering ; Coatings ; colloids ; cryoSEM ; Diffusion ; Diffusion rate ; Drying ; Drying agents ; Evaporation ; Exact sciences and technology ; Liquid-liquid and fluid-solid mechanical separations ; Mathematical models ; Microstructure ; Peclet number ; Porosity ; Sedimentation ; Sedimentation & deposition ; setting/sedimentation ; Settling</subject><ispartof>AIChE journal, 2010-11, Vol.56 (11), p.2769-2780</ispartof><rights>Copyright © 2010 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</citedby><cites>FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23362071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardinal, Christine M</creatorcontrib><creatorcontrib>Jung, Yoon Dong</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><creatorcontrib>Francis, L.F</creatorcontrib><title>Drying regime maps for particulate coatings</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010</description><subject>Applied sciences</subject><subject>Brownian motion</subject><subject>Chemical engineering</subject><subject>Coatings</subject><subject>colloids</subject><subject>cryoSEM</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Drying</subject><subject>Drying agents</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Liquid-liquid and fluid-solid mechanical separations</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Peclet number</subject><subject>Porosity</subject><subject>Sedimentation</subject><subject>Sedimentation & deposition</subject><subject>setting/sedimentation</subject><subject>Settling</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90NFqFDEUBuAgCq7VC5_AQRAVmfacZDKZXJap1sJSQS1ehtPsyZI6u7Mms-i-vdGpvRD0KiR850_yC_EU4RgB5AlFf4wSLdwTC9SNqbUFfV8sAADrcoAPxaOcb8pOmk4uxJuzdIjbdZV4HTdcbWiXqzCmakdpin4_0MSVH2kqJj8WDwINmZ_crkfi6t3bz_37evnh_KI_XdZe6xZqUqDYXytD3QolrwAbdS1ZcmhMK8l61WJYmcZ2GDprpVdNMKxRaehYr1gdiZdz7i6N3_acJ7eJ2fMw0JbHfXZdazsA2zZFvvqvxHIhopIWCn3-F70Z92lb_uGM7qSy0NiCXs_IpzHnxMHtUtxQOjgE96tfV_p1v_st9sVtIGVPQ0i09THfDUilWgkGizuZ3fc48OHfge70ov-TXM8TMU_8426C0lfXGmW0-3J57vozbT72l0uni382-0Cjo3Uqr7j6JAEVlDTAUv9Pwb6dxA</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Cardinal, Christine M</creator><creator>Jung, Yoon Dong</creator><creator>Ahn, Kyung Hyun</creator><creator>Francis, L.F</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201011</creationdate><title>Drying regime maps for particulate coatings</title><author>Cardinal, Christine M ; Jung, Yoon Dong ; Ahn, Kyung Hyun ; Francis, L.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Brownian motion</topic><topic>Chemical engineering</topic><topic>Coatings</topic><topic>colloids</topic><topic>cryoSEM</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Drying</topic><topic>Drying agents</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Liquid-liquid and fluid-solid mechanical separations</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Peclet number</topic><topic>Porosity</topic><topic>Sedimentation</topic><topic>Sedimentation & deposition</topic><topic>setting/sedimentation</topic><topic>Settling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardinal, Christine M</creatorcontrib><creatorcontrib>Jung, Yoon Dong</creatorcontrib><creatorcontrib>Ahn, Kyung Hyun</creatorcontrib><creatorcontrib>Francis, L.F</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardinal, Christine M</au><au>Jung, Yoon Dong</au><au>Ahn, Kyung Hyun</au><au>Francis, L.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying regime maps for particulate coatings</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2010-11</date><risdate>2010</risdate><volume>56</volume><issue>11</issue><spage>2769</spage><epage>2780</epage><pages>2769-2780</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions. © 2010 American Institute of Chemical Engineers AIChE J, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12190</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2010-11, Vol.56 (11), p.2769-2780 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_869800964 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences Brownian motion Chemical engineering Coatings colloids cryoSEM Diffusion Diffusion rate Drying Drying agents Evaporation Exact sciences and technology Liquid-liquid and fluid-solid mechanical separations Mathematical models Microstructure Peclet number Porosity Sedimentation Sedimentation & deposition setting/sedimentation Settling |
title | Drying regime maps for particulate coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T02%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20regime%20maps%20for%20particulate%20coatings&rft.jtitle=AIChE%20journal&rft.au=Cardinal,%20Christine%20M&rft.date=2010-11&rft.volume=56&rft.issue=11&rft.spage=2769&rft.epage=2780&rft.pages=2769-2780&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12190&rft_dat=%3Cproquest_cross%3E869800964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5560-a303ecb37a8d12ed0143b2e2ef4762a9c361fd74981f8992c34f7e513508e5de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=758239049&rft_id=info:pmid/&rfr_iscdi=true |